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AbsllscL A new non-local algorithm for the simulation of trem on the lattice Z d  is 
proposed. We study the implemenlalion and the propenies of the algorithm, and show 
that it is decisively better than an algorithm which performs only local moves. We use 
the new algorithm to investigate the properties of laltice trees in two, three, four, eight 
and nine dimensions. 

1. Introduction 

The numerical and theoretical study of latticc trccs provides a natural model for 
calculating the properties of branched polymers in dilute solution. It is also believed 
that lattice trees share the same universality class as lattice animals (Lubensky and 
Isaacson 1979, Seitz and Klein 1981, Duarte and Ruskin 1981). so that the critical 
exponents of animals can be determined numerically by investigating trees, which are 
simpler to simulate than animals. 

The critical exponents of animals in &dimensions are related to the Lee-Yang 
edge singularity (Parisi and Sourlas 1981, Fisher 1978, Kurze and Fisher 1979, Bovier 

through the relations 
e! a! !984) of !!IC !sing made! in an imaginary magnetic fie!d in ( d  - 2)-dimensiom 

v ( d +  2 )  = ( u ( d )  + l ) / d  
6Yd + 2 )  = a ( d )  + 2 

where U is the  exponent which controls the magnetization of the king model near the 
edge singularity. The exponents U and 0 are defined by (r'),, - n'" and 1 ,  - n-'X", 
where (r ' ) ,  is the mean square radius of gyration of trees with n vertices, and t ,  
is the number of (unrooted) trees with n vertices. X is the lattice-dependent growth 
constant of lattice trees. Since the lsing model is exactly solvable in zero and one 
dimensions ( u ( 0 )  = -1, and u(1) = -1/2), we can get the 'exact'values O ( 2 )  = 2 
and O(3) ~, = 312: and 4 3 )  = 1/2 .  (Note that equation (1.1) breaks down if d = 0.) 

Subsequent results indicated that t h e  dimensional reduction used to derive equa- 
tions (1.1) and (1.2) fails if the lsing model is in a real magnetic Add (Fisher er a/ 
1984, Imbrie 1984). It is therefore necessary to determine the validity of these equa- 
tions by a high precision numerical simulation. lb achieve this aim, several numerical 
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studies have been performed (Glaus 1985, Duarte 1986, Duarte and Cadilhe 1989). 
In this paper we aim to propose a better algorithm than those used in those studies, 
and we use it to estimate v(d) and in particular to consider the validity of equation 

Aside from their importance in statistical mechanics, lattice trees are also of 
considerable interest in chemical physics as models of branched polymers in dilute 
silution. There is an enormous literature on simulation of polymers in general (e.g. 
Kremer and Binder 1988). Most of the Monte Carlo methods developed for branched 
polymers are for trees with fvted topology, such as 'stars' or 'brushes' (e.g. Carmesin 
and Kremer 1988, Whittington et a/ 1986, Lipson et a1 1987), rather than arbitrary 
trees. (Polymer chemists' emphasis is frequently on polymer dynamics, but non-local 
algorithms such as ours generally only give information about static properties.) 

An even more basic example of a random geometric object with non-local inter- 
actions is the self-avoiding walk. The simplicity of this model makes for innovative 
algorithm designs for exact enumeration studies and Monte Carlo simulations. Among 
Monte Carlo algorithms, the pivot algorithm brought about the most dramatic im- 
provement in the simulation of walks, especially when simulated in the canonical 
ensemble (that is, with fixed length) (Madras and Sokal 1987, Janse van Rensburg et 
a1 1990). The basic idea of the pivot algorithm is the use of non-local elementary 
transitions; that is, it tries to change large parts of the walk all at once. Borrowing 
from this idea, we shall consider an implementation of large, non-local element& 
transitions in a Monte Carlo simulation of lattice trees, and we shall show that this 
brings about a dramatic improvement in the simulation. 

Earlier studies of lattice trees and animals by exact enumeration and by Monte 
Carlo methods (Peters et a1 1979, Redner 1979, Gould and Holl 1981, Seitz and 
Klein 1981, Gaunt et a/ 1982) that were concerned with estimating U had estimates 
varying from 0.45 to 0.53 in three dimensions; a considerable spread of results. Glaus 
(1985) and Caracciolo and Glaus (1984) performed a grand canonical Monte Carlo 
simulation of lattice trees estimating v(3) = 0.495 f 0.013 in three dimensions and 
4 2 )  = 0.635 f 0.015 in two dimensions. These last results strongly support the 
validity of the dimensional reduction leading to equations (1.1) and (1.2). In this 
paper, we estimate 4 3 )  = 0.4960 *0.0052 and v(2) = 0.637 f 0.012. 

"U, p a p  w u,ga,,ucu d> LUIIUW3. i)GL.LLUII L yrGJGrrL3 va.J,* "Cilll l lLIVIII),  UCICl lUCI  

our algorithms and proves that they are ergodic and reversible, and discusses proper- 
ties of lattice trees that we will study (e.g. radius of gyration, span, longest path and 
mean branch size). Section 3 discusses the implementation of these algorithms on 
the computer, with particular reference to the efticiency of the various steps. Section 
4 is a detailed analysis of the numerical results of our simulations. Our conchsions 
about our algorithms are present in section 5. 
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(1.1). 

_ _ _ _  ^^_^_ :" ..-""..:.."A ^^ F^11 .̂.." C.̂ .̂:̂ .. 1 ......""..*" L"":" Aac..:.L...* A ~ r r r : l . ~ r  

2. Basic definitions and methods 

Let Z d  be the d-dimensional hypercubic lattice. A lattice bond animal (or simply an 
n n k n ! )  is a cmnected subgraph af zd, we define a k~trice bond tree (or simply a 
tree) as an animal with no cycles. (A cycle is a walk containing at least two edges, 
with all its vertices (or sites) distinct, except the first and last vertices, which are the 
same.) Therefore, on a tree, there is only one path between any two given points: it 
is a simp5 connected object. 
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Let w be a tree, and let zi be a vertex in w. Then we say that ZI is a vertex of 
degree i if there are i edges in w incident on U. An edge x in w is a leaf if one 
endpoint of x is a vertex of degree one. Deleting any edge of a tree results in two 
connected components, each itself a subtree of the original tree; any subtree which 
can be obtained by deleting a single edge is called a branch. Evidently, every leaf 
corresponds to a branch consisting of one vertex, and vice versa; we shall sometimes 
abuse our terminology by referring to a leaf as a branch consisting of one edge. 

2.1. Canonical Monte Carlo algorithms for lattice trees 

The symmetry group of the cubic lattices is the octahedral group 0,. Every tree in 
the lattice can be transformed by any element of Oh, which is typically a reflection 
or a rotation. We define now two possible algorithms for lattice bond trees in the 
canonical ensemble (fixed number of sites n). Let d be the number of dimensions, 
and suppose that w is an (unrooted) tree with n sites and ( n  - 1 )  edges. 

Algorithm A: (Leaf-mover). In this algorithm we attempt only small moves on the 
tree, i.e. one edge at a time. The essential idea is similar to that of Duarte (1986), 
and to the grand canonical algorithms of Glaus (1985), and Caracciolo and Glaus 
(1984). The algorithm flows as follows: 
Al. Pick an edge at random on the tree. 
A2. If this edge is not a leaf, then we count this as a failed transition and go to step 

Al. Otherwise, we delete the leaf. 
A3. Pick a vertex on the rest of the tree (which has ( n  - 1) vertices). 
A4. Tty to append a leaf to this vertex by randomly choosing one of its 2d nearest 

neighbours. If this creates a cycle then we count this as a failed transition and 
we go to step Al. Otherwise, we have a succesful transition and we update the  
old tree before we go to step A1 for the next attempt. 

Algoriihm B: (Branch-mover). In this algorithm we attempt large, non-local transitions. 
The essential idea of the algorithm is the following. We pick a branch in the tree 
at random and we break it off. The branch is then transformed (e.g. rotated) by an 
element of 0,. We then attempt to append thc  branch at another location in the 
tree. 

B1. 
B2. 

B3. 

B4. 
BS. 

The algorithm flows as follows: 

Pick an edge at random in the tree. 
Delete this edge. This breaks the tree into two subtrecs, with one subtree 
typically bigger than the other. 
Find the smaller subtree and apply a randomly chosen element of the octahedral 
group to it. 
Pick two vertices at random, onc on each of the two subtrees. 
'Itanslate the smaller subtree such that the vertices chosen in step B4 are near- 
est neighbours on the lattice, in any of 2d possible orientations. Look for 
intersection between the (rotated and translated) smaller subtree and the bigger 
subtree. If there is an  intersection, then we have a failed attempt, so go back 
to step B1 for the next attempt Otherwise, we have a new trce, consisting of 
the bigger subtree, the  (rotated and translated) smaller subtree, and a new edge 
joining the two vertices chosen in step B4. Updatc the old trce and go to step 
B1 for the next attempt. 

The elementary transitions in algorithm A are just special cases of the possible 
elementary transitions which can occur in algorithm B; if the smaller subtree (branch) 
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in algorithm B is a single vertex, then the attempted transition is identical to that of 
algorithm A. 

Algorithms A and B are Monte Carlo algorithms (Metropolis er al 1953) sim- 
ulating trees in the canonical ensemble (with a k e d  number, n, of vertices). Let 
T,, be the set of all (unrooted) trees (modulo a translation) with n vertices in the 
hypercubic lattice. Let the cardinality of T, be 1 , .  Then it is believed that 

E J Janse van Rensburg and N Madras 

a...  

t ,  - n-"X" (2.1) 

where X is the growth constant for trees on the lattice, and 0 is a critical exponent. 
We-assign an equal weight to each tree in T,. Algorithms A and B have finite 
state space T, and we shall see that they each have the uniform invariant probability 
measure 

rw = t i '  Vw E T,,. (2.2) 

The hasic elementary transitions of each algorithm are described by a transition 
probability matrix P = {p(w + U)) = { p W w )  which has the following properties: 

(1 )  For each w, U E T, there exists an m > 0 such that the m-step probability from 
w to Y ,  p w v ( m ) ,  is positive. This is ergodicily of the algorithm, and we prove it 
in section 2.2. 

rWp, ,  = 7r". This will be proven for algorithms A 
and B in section 2.2. Therefore, it follows that rw is the unique limit distribution 
of the Markov chain with state space T, and transition probability matrix P 
(Kemeny and Snell 1976). 

Let the observed states of this Markov chain be represented by X,. The states 
X ,  and X,+, are in general correlated, so that the calculation of error bars for the 
mean of a real-valued function A(w),  w E Tn, is a complicated procedure. If we start 
the Markov chain in equilibrium, then { A , )  = {A(X,) ]  is a stationary stochastic 
process with mean 

(2) For each tree Y E Tn, 

(2.3) 

and unnormalized autocorrelation function 

The normalized autocorrelation function is defined by 

Once the Markov process is in equilibrium, thcn the inregrared aulocorrelation lime is 
given by 

m 
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The integrated autocorrelation time controls the statistical error in the Monte Carlo 
measurements of the mean (A,) of the observable A. The variance in the sample 
mean A, over N observations, is asymptotically given by 

In other words, the effective number of independent observations is N / ( ~ T ~ ~ ~ )  
(Madras and Sokal 1988). 

The relaxation time of the slowest mode in the system is called the erponential 
autoconelution time T~ (Madras and Sokal 1988). If the normalised autocorrelation 
function decays exponentially, then T~ is the rate of that decay associated with the 
slowest mode in the system. If we estimate the exponential autocorrelation time 
associated with a variable 2, then we indicate it by T=,+. vpically, T (the integrated 
autocorrelation time) is of the same order as T~ (or better). 

2.2. Ergodicity and reversibility 

It is now necessary to prove that algorithms A and B are ergodic and reversible 
(satisfy detailed balance). 

2.2.1. Ergodicity. Both algorithms A and B are ergodic because any tree of ( n  - 1) 
edges can be transformed into a straight line in ( n  - 1) steps. In detail: let w be a 
tree with n vertices (and consequently (n  - 1) edges). Let { e i ]  be the set of unit 
vectors in Zd.  We find the t o p  v e r t e x  t of w by a lexicographic ordering of all the 
vertices. Since w is a tree, it has at least two leaves. There is therefore at least one 
leaf which has an endpoint of degree 1 which is not 1. Move this leaf and append it 
to t in the e, direction. Then there is a new top vertex: ( 1  +el ) .  Repeat this process, 
delete a leaf and append it to the top vertex. Every edge that we remove must have 
had endpoints with first components less than or equal to the first component of t (by 
thedefinitionof t); and is moved to a locationwithendpoints ( t + ( i - l ) e l , i + i e l )  
(if it is the ith leaf to be moved). After (n - 1) iterations the vertices in the new 
tree will be {1 ,1  + e , , t  + 2 e l , .  . . , t  + ( n  - l )e l ) ,  and the associated edges will 
he ( t  t ( i  - l ) e , ,  1 + iel), where i E { 1 , 2 , .  . . ,n  - 1). Algorithms A and B are 
therefore ergodic. 

2.2.2. Reversibility of algorithm A.  Let w be a tree, and let w’ be a tree that can be 
obtained from w by moving a single leaf. The probability of obtaining w’ is given by 
the probability of (1) picking the correct leaf, (2) picking the  correct site to append it 
to, and (3) picking the correct orientation when we append the new leaf. In step A1 
of algorithm A we see that the probability for picking a particular leaf is l / ( n  - 1). 
The resulting tree has ( n  - 1) sites left, so the probability for picking a particular 
site is l / ( n  - l) ,  and there are 2 d  possible ways of attempting to append the new 
leaf. Therefore 

1 
p ( w  - w’ )  = 2 4 n -  1 ) 2  (2.8) 

where p ( w  -U‘) is the probability of obtaining w’ from w by moving a single leaf. 
The reverse process is obviously the same: therefore 

p ( w  - w‘) = p(w’ - w )  (2.9) 
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I 

Figure 1. If  an algorithm for trees picks leaves and places lhem back by selecting a Bile 
at random from the perimeter of the tree, lhen il is not reversible. The marked leaf 
in (0)  is picked with probability 113.  I1 is put back in ( b )  with probabilily 118. I f  we 
iFa3e ;he piolmn, iiico *e Biid i i r  io inme f" (ij io {bj, Sild ; i s  io move tiom 
( b )  10 (4. 

whenever p ( w  - w') > 0. Also, equation (2.9) clearly holds if p ( w  - w' )  = 0, and 
so algorithm A is reversible. 

We note that the algorithm for site trees of Duarte (1986), and also Duarte and 
Cadilhe (1989), is not reversible. Consider for example the tree in figure l ( a ) .  In their 
algorithm a choice is made from the leaves, and the leaf is deleted. With probability 
1 / 3  we obtain the tree in figure l ( b ) .  The algorithm then selects a site from the 
perimeter set of the tree, and attempts to  append the leaf there. In figure l ( b ) ,  there 
are eight perimeter sites, so we obtain figure l(c) with probability 1 / 8  from 1(6), 
and with probability 1/24 from l(a). A similar argument shows that the probability 
of obtaining l ( a )  from t(c) is 1 /32.  The algorithm is therefore not reversible. 
Reversibility ofAlgm'fhm E. Let w be a tree, and let w' be a tree that can be obtained 
from w by moving a single branch of w. The probability of obtaining w' is given by 
the probability of ( 1 )  picking the correct branch, ( 2 )  choosing the correct element of 
the octahedral group to rotate the chosen branch, (3) picking the correct vertices on 
each branch to reconnect the tree, and (4) putting the chosen vertices in the correct 
orientation to each other. We choose a branch by deleting an edge; this can be done 
in (n - 1 )  ways, if the tree has n vertices. Suppose that the octahedral group has 
oh elements, that the number of vertices in the branch is k, and that we perform the 
algorithm in d dimensions. Then 

1 
--t w') = 

2 d o * k ( n -  k ) ( 7 z - l ) '  
(2.10) 

The procedure can easily be seen to have thc same probability if we start from w' 
and construct w. It is therefore in detailed balance. (Note that evely g E Oh has an 
inverse, so we can always perform the attcmpted transition in reverse.) 

2.3. Properlies of lullice frees 

In this scction we consider the properties of lattice trees (for an  example of a 
lattice tree, see figurc 2) that can be mcasured by a canonical simulation of lattice 
trees in the cubic lattice. Let . ; ( U ) ,  i = 1 , 2 , .  . , , d ,  be the ith cartesian coordinate 
of the vertex 71. Let w be a lattice tree, and let U, be the ith vertex of the tree. Then 
we have the following definitions. 
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Figure 2. A lattice tree with 5000 vertices. 

2.3.1. Mean square radius ofgyration. Let T' , (w)  he the square radius of gyration of 
w. That is 

It is widely believed that there exists a critical exponent v such that 

(r:) - n2u (2.12) 

where the mean is taken over all conformations of trees with n vertices. 
measures a length scale for trees. 

23.2. Mean span. Let d be the spatial dimension. Then we define s,(w), the mean 
span of the tree w, by 

(6) 

(2.13) 

If we assume that there is only one length scale for lattice trees, then we expect from 
equation (2.12) that 

( S " )  - n" (2.14) 

where the mean is taken over all the possible conformations of trees. 

2.3.3. Longestpafh in the tree. Let p,(w) be the length of the longest self-avoiding 
walk in the tree w. We are immediately interested in the behaviour of p,(w) with 

a6 he a longest path in the tree starting from a, and let br  he a longest path in 
the tree starting from 6. Then b r  is a longest path in the tree (Dewdney 1985a; for 
an elegant proof, see Dewdney 198Sh). The longest path in the trec is an intuitive 
'measure' of how far the tree differs from a self-avoiding walk, that is, to what extent 

We Cl!! eaoi!y find p n ( L l )  in !he fo!!owi!?g "y. Le! a bP nay vertex in U. k t  
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is it entropically favourable to add appendages onto the walk rather than making it 
longer. We define the exponent p by 

E J Janse van Rensburg and N Madras 

( P A  - np (2.15) 

where the mean is taken over all the possible conformations of trees. If p = 1, then 
a lattice tree is essentially a decorated self-avoiding walk. Since self-avoiding walks 

< i, it is 
also useful to note that p ,  is at least as long as the span, so that U < p. 

2.3.4. Mean branch size. Let b,(w) be the mean size of a branch in w obtained by 
deleting an edge in w with uniform probability. We define the exponent c by 

and trees do not be;ong to the sBme universaiiiy cirss, we expect [bat 

/ h  \"nl \ -. ' -  (2.15) 

where the average of b, is taken over all the conformations of trees. We can guess 
the value of t in the following way. Suppose that the structure of the tree is that 
of a longest path which contains @ ( n p )  edges, and with @ ( n e )  smaller branches 
which sprout from the longest path. (Here @(n') means at least cn' and at most 
Cn2 for some C c > 0) .  The total number of edges in these smaller branches is 
n -  @ ( n p ) ,  so each branch has an average size of O(n'-P).  Ifwe pick an edge from 
the longest path, then we separate the tree into two pieces which each have @ ( n )  
edges, since each piece of the longest path will have O ( n p )  edges and of the same 
order of side branches. If we pick an edge not on the longest path, then the size of 
the branch picked is @(no), where U satisfies 0 6 U 6 1 - p. We therefore expect 
that 

- @(nP) f @(no). (2.17) @(n).@(nP) + @(no) .@(n - nP) 
n (6 , )  - 

Hence we conclude that t = m a x { p , a } ,  where U < (1 - p) .  Next, to see that 
t = p. we argue heuristically as follows. Tike a branch of the tree of size O(n ' -P)  

not contain the edge which touches the longest path is @ ( n u ) ,  by definition of U. 

Therefore, in a tree. of n vertices with a single randomly labelled leaf, if we delete 
an edge and take the component which does not contain the labelled leaf, then the 
size of this component is @ ( n O / ( ' - P ) ) .  The probability that the labelled edge is 
in the smaller branch is ( b , ) / n  = @ ( n ' / n ) ,  by definition of e, so the expected 
size of the branch which does not contain the labelled leaf is @(no/('-+')) = ( n  - 
@ ( n O ) @ ( n ( / n )  -t O ( n f ) ( l  - O ( n r / n ) )  = @(ne) .  Therefore, U = t ( 1  - p )  < e. 
Combining this with E = m a x { p ,  o}, we conclude that 

and de!etc an edge 8! r2ndom; the size of the component of the branch that does 

p =  c .  (2.18) 

2.3.5. Accepfancefraction ofalgorirhmsA and B. A pattern theorem for trees (Madras 
1989) allows us to estimate the behaviour oI the acceptance fraction af the algorithms. 
It implies that any k e d  arrangement of edges in a tree will occur @ ( n )  times on 
average in a tree of sufficient size. If an arrangement of edges are selected which 
allows an additional'edge to be added to it, then it appears that there are @ ( n )  
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locations in the tree where a proposed leaf may be added on average. Also, there 
are @(n) leaves. Therefore, the acceptance fraction of algorithm A, ft, satisfies 
liminf,,, ft > 0, and we in fact expect it to have a limit: 

lim f," = c (2.19) 

where the constant C is dependent on the spatial dimension. The same applies to 
algorithm B, since f! > f;. 
2.3.6. The degrees ofthe vertices in the tree. The pattern theorem for trees also predicts 
that the frequency of vertices of degree t i ,  i = 1 , 2 , ,  . . , 2 d ,  in a tree is @(n).  If 
the number of vertices of degree i in a given tree is given by ti. then we expect that 

"-m 

lim - ( t i )  - - c i  . for 1 < i < 2 d  (2.20) 
n-m n 

where C; is a constant dependent on d,  and where the tree has n vertices. 

3. Implementation of the algorithms 

The implementation of the algorithms deserves some attention, since big savings in 
computer time can be obtained by carefully designing the code. The algorithms were 
both programmed in FORTRAN77. We first describe the programming of algorithm B, 
since algorithm A can be viewed as a special version of algorithm B, where we only 
allow the moving of leaves. 

Suppose that we are considering a tree in d dimensions with n vertices. The 
following permanent data structures were set up: 

(A) A list of vertices of the tree in an n x 3d array V .  The first d addresses in 
the ith row of V contain the coordinates of the ith vertex of the tree. The 
remaining 2d addresses ( V ( i , d +  l ) , V ( i , d + 2 ) ,  . . . ,  V ( i , 3 d ) )  are pointers 
which point to the labels (i.e. row numbers) of vertices which are connected to 
the ith vertex in the tree. (Some of these addresses will he empty if the degree 
of the ith vertex is less than 2d.) 

(B) A hash-table H T A B  (an m x d array) (Knuth 1973). Here m is a fmed 
number (m = 10n is sufficient). The vertices of the tree are hashed into the 
table using a hash-function (Madras and Sokal 1988) and linear probing. We 
need to perform three operations on H T A B .  If v is any vertex, then these 
operations are 
(a) V E  H T A B ?  
(b) Add U to H T A B .  
(c) Remove from H T A B .  
It is easy to write fast subroutines to perform these tasks on H T A B  (see Knuth 
(1973) for details). The advantage of using the hash-table is that we can use 
operation (a) to perform an efficient check that a proposed new configuration 
is self-avoiding (and thcrefore a tree). 

(C) A list of labels S M A L L  (an n / 2  x 2 array). We store the labels of the branch 
that we attempt to move in one of the two columns of S M A L L .  

(D) A list A (an la-element vector). A is initialized to contain a zero in each 
address. We shall use A to identify which vertices are not in the branch that 
we attempt to move. 
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We can now implement algorithm B in the following way: 

(Bl-B2) Choose an edge at random from the tree. We do this by using rejection: 
We pick i E { 1 , 2 , .  . . , T I ]  and j E {d+ l ,d+2 , .  . . , 3d )  at random. If 
V ( i , j )  is empty, then we try again; othenvise, we pick the edge whose 
endpoints are given by i and V ( i , j ) .  On average, the number of tries 
needed to find an edge is d. We delete this edge, separating the tree into 
two subtrees or branches. 
Perform a depth-first or breadth-first search (Wilson and Watkins 1990) 
on the two subtrees simullaneously, starting at the endpoinlx of the chosen 
edge, to find the branch which we will attempt to move. This amounts 
to searching alternatingly on the two subtrees, reading the labels of the 
vertices encountered into S M A L L ( . , i ) ,  choosing i = 1 or 2 for each of 
the two subtrees. As soon as one of the two subtrees has been completely 
searched, we know that it must be the smaller subtree (branch), and we 
pick i to be 1 or 2, whichever corresponds to the branch. The labels of 
the vertices in the branch are then written in the ith column of SMALL,  
in order as we detected them by the search. Once we have determined the 
labels of the vertices of the branch, we update the list A by putting a 1 in 
each address which is a label of the vertices on the branch. This is a very 
convenient arrangement. By simply querying A, we can detect whether a 
vertex is in the branch, or in the rest of the tree. It is also easy to reset 
A to all contain all zeros: The addresses of A which contains non-zero 
elements are the labels of the  vertices on the branch, which are listed in 
S M A L L .  Note that the amount of 'work' performed in this step is of the 
order the size of the smaller subtree. 
Pick a vertex z on the branch, and another vertex y on the rest of the tree. 
The vertex z can be picked uniformly from the list in SMALL.  We pick 
the vertex y by rejection from V, querying the list A to determine whether 
the vertex is in the branch. Since the number of vertices in the branch is 
at most n / 2 ,  the average number of attempts is at most 2. 
The branch is now rotated by applying a randomly chosen element of the 
octahedral group to it. We then translate the rotated branch so that the 
vertcx z on it will be a nearest neighbour of the vertex y on the larger 
subtree. This is one of 2d  possible positions, chosen at random. The 
proposed tree is now formed by adding the edge between the vertices z 
and y. The last step in the algorithm is to check for self-intersections in 
the proposed tree. This is easily done by querying the hash-table HTAB 
and the list A. A particularly effective way of performing the check is to 
start at the vertices T and y, alternatingly performing a breadth-first'search 
on the two subtrees. Since the two subtrccs are in closest contact at z and 
y, it seems likcly that an intcrsection will occur near these vertices, if it 
occurs at all. We perform stcp B5 efficiently by rotating the vertices on the 
smaller trec one by one, testing for intersections each time we calculate the 
new coordinates of another vertex. 

(B3) 

(B4) 

(B5) 

I f  the conformation is not self-avoiding, then we reject it, we reset the list A 
to its null-values and start a t  step E l .  Otherwise we accept the new tree, update 
the vertices in V and update the hash-table by removing the old vertices from it and 
adding the new vertices to it. Lastly, we reset the list A to its null-values we take data. 
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The Size of an average branch on the tree is expected to grow as R' (recall 
(2.16)). The searches (depth-first and breadth-first) which we perform to identify 
the branches take therefore O(nf) operations. Updating the old tree in case of 
a successfu~ attempt, and updating the hash-table and other lists also takes O(n') 
operations. We therefore expect the average amount of work per iteration in the case 
of algorithm B to be O ( n c ) .  

The implementation of algorithm A is simpler than that of algorithm B. We retain 
LIIC uaca x I u u u i c s  v anu n 1 AD, DUI we nore now that we do not need SMALL 
and A, both of which are necessary to search and store branches in algorithm B. An 
implementation of algorithm A would be: 

(Al, A2) Choose an edge from the tree, in exactly the same manner as was done in 
algorithm B. If the edge has one vertex which is of degree one, then delete 
it, else we reject the attempt, and try again to select an edge. 

(A3, A4) Pick a vertex on the tree, and one of its neighbouring sites with uniform 
probability, and attempt to add an edge between the two sites. If the 
neighbouring site is already occupied, then we reject the attempt, and start 
again at step Al. Otherwise we add the edge, and update the tree and the  
hash-table. We take data and start again from step Al. 

The amount of work per attempted iteration of algorithm A is evidently O(1). 
At every point in the algorithm we only deal with at most two vertices, and .there is 
no explicit n-dependence in any of the operations performed. 

The number n + i ( w )  of a tree w with n vertices, where 7; is the square radius 
of gyration, can be calculated using only integer operations. We also note that after 
every successful attempted transition we can 'update' n27; by simply subtracting 
the old vertices and adding the new. The span of a tree, sn, the longest path p ,  
and the degrees of the vertices of the tree take O(n) operations to calculate. In 
view of these facts, it seems best to sample these properties of the tree every n 
attempted transitions, for it is not sensible to spend O( n) operations calculating the 
span of a tree while less than n iterations seperates it from the last configuration 
that was sampled: We may end up spending more time calculating the span and 
other properties than updating the tree into new regions of configuration space. The 

attempted iteration; we therefore calculated these numbers as block-averages over 
blocks of data of length R. 

The data were written as a stream of numbers during the runs and stored for 
analysis. We used a time series analysis to find the autocorrelation times for each of 
the variables (Madras and Sokal 1988). The number of iterations performed for each 
run was typically 10000n, which gives us loo00 data points, and error bars of about 
one per cent on the calculated variables. The program proved to be extraordinarily 
efficient; for example, the results in four dimensions were obtained by a total of 11.5 
hours of computer time on a DEC5000 workstation (with RISC-technology). At each 
value of n the initial tree was chosen to be a Straight sequence of edges with no 
branches. Algorithm B was applied to this initial tree until all initial bias disappeared 
from the data. This relaxation was very fast for small n, but took up to 5 x 105 
itcrations for longer trees. 

.L^ A-.- ~ .___^ ~ T I  ._I r r m  1 r, L ~ ~ .  ~~~~ ~~ ~. 
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4. Numerical results 

4.1. Comparing algorithms A and B 
It is not immediately obvious that algorithm B will perform better than algorithm 
A in a numerical test. This is because algorithm A can perform O ( m )  attempted 
iterations for every one attempted move of a branch of m vertices by algorithm B. 

In this section we shall compare these algorithms by comparing the autocorre- 
lation times in units of the amount of work performed by the CPU. A convenient 
measure of 'work' is the CPU time used by the algorithms in generating the trees, ex- 
cluding the time required for taking any measuremens of the properties of the trees. 
By comparing the CPU time per iteration of algorithm A and algorithm B, we can 
find a ratio T: which is the average number of attempted transitions in algorithm A 
per one attempted transition in B (for the same amount of CPU time). If we calculate 
the autocorreiation times of aigorithm B in units of n attempted iterations, then we 
should expres it in units of ?-in attempted iterations for algorithm A. The algorithms 
are then compared by taking the ratio of the autocorrelation time of algorithm A (in 
units of rfn attempted iterations) to that of algorithm B (in units of n attempted 
iterations). Since the number of 'independent observations' in the data stream of the 
algorithm is inversely proportional to 7, we are in fact calculating the ratio of the 
number of independent ohsenations obtained by algorithm B for every independent 
observation by algorithm A (for the same amount of CPU time). 

E J Jame van Rensburg and N Madras 

Table l(o). A comparison between the autocorrelation times with respect to the mean 
square radius of gyration of algorithms A and B in two and three dimensions. The 
autocorrelation ti" are in units of <BA" and n attempted iterations for algorithms A 
and B respectively. 

n r: r, (A) r, (B) M(B,A) 

WO dimensions 25 6.2 4.34 1.51 0.60 
50 1.4 10.4 1.92 0.43 

100 9.0 34 2.9 0.29 
200 11.7 76 3.8 0.23 
400 15.6 I24 5.7 0.21 

Three dimensions 25 7.0 2.7 0.93 0.59 
50 8.2 7.1 1.00 0.38 

100 9.2 16 1.03 0.25 
200 10.6 35 1.6 0.21 

In tab!e ?(E) we c.ompare the a!gorithms in two and three dimensions with respect 
to the mean square radius of gyration. The rcsults for the other global properties 
(mean span, mean longest path, and mean branch size) are very similar. In the 
first column we list the number of vertices of the tree under consideration. The 
second column contains T:, the number of attempted iterations of algorithm A for 
every attempted iteration in algorithm B. The third and fourth columns contain the 
autocorrelation times of algorithms A and B respectively, and in the last column we 
list M(B,A), the square root of the ratio of the autocorrelation times of algorithm B 
to that of algorithm A. We can expect that the confidence intervals in algorithm B 
will be smaller than that of A by this factor. We see that algorithm B outperforms 
algorithm A significantly. In two dimensions, for n = 400, we can expect error bars 
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Table l (b ) .  The autocomelation limes of algorithm B, measured from the mean square 
radius of gyration and in units of n attempted ilerations. Error ban are standard 
deviations. 

n T r l  (20) r,l (30) T,2 ( I D )  Trz (80) r+ (9D)l 

25 1.509(77) 0.927(40) 0.794(M) 0.728(31) 0.707.(27) 
50 1.92(12) 1.6)3(43) 0.828(31) O.haS(22) 0.682(26) 
1W 2.90(M) 1.033(49) 0.750(24) 0.642(21) 0.676(26) 
200 3.80(%) 1.57(14) 0.840(35) O.h21(20) 0.638(24) 
3W 4.36(37) 1.230(68) 0.783(30) 0.615(24) 0.61q20) 
400 4.79(42) 1.271(60) 0.776(30) O.h22(M) 0.589(19) 
6W 6.W(60) 1.249(59) 0.729(28) 0.612(21) O.SBS(19) 
8W 7.08(73) 1.313(67) 0.752(29) 0.585(19) 0.611(23) 

1 Z N  S.ZS(93) 1.48(11) 0.708(27) 0.566(18) 0.590(23) 
16W llJ(Z0) 1.452(69) 0.732(28) 0.557(17) 0.57q22) 

which are about five times smaller had we run algorithm A (for the same amount of 
work). 

It is striking how the superiority of algorithm B improves with n, the number of 
vertices in the tree. A plot of the autocorrelation time against n on a log-log scale 
shows linear behaviour; we therefore expect that r will grow as a power of n. A 
simple weighted least squares fit to the data in the table (where we also take into 
account data for algorithm B for trees consisting of up to 1600 vertices, as listed in 
table l(b) implies that 

T , . ~ ( A )  * n1.3*0.2 ( 4 4  
rr2 (8) -, n0.45*0.04 (4.2) 

rr2 ( A )  -, n1.3*0.1 (4.3) 

in two dimensions, and in three dimensions, 

(4.4) 
o.tzia.a3 r,..(B)- n 

where the statistical errors are 95% confidence intervals. Here we have measured 
the autocorrelation times in units of n attempted iterations for algorithm B, and in 
rzn iterations for algorithm A. (Note that since the mean CPU time per attempted 
iteration in algorithm B is believed to go as n', if we want to measure autocorrelation 
times in CPU seconds, then we must add (1 + E )  to all of the exponents above). 

Comparing equations (4.2)-(4.4) suggests that algorithm B performs better in 
three dimensions than in two, with the autocorrelation times growing slower with the 
number of vertices in the trees in three dimensions. I n  contrast to this, algorithm A 
has autocorrelation times which depend similarly upon n in two and three dimensions. 

In higher dimensions, an examination of table I(b) suggests that the data points 
are only weakly correlated, if at all. In retrospect, the algorithm is even better than 
we suspected. Assume that the  path between two given vertices on the tree has, 
on average, @(no edges. The correlation between these points are destroyed in 
the algorithm if we pick an edge on the path between thc vertices and perform a 
successful transition. In the mean field approximation, the  probability of this event is 
roughly @(ne-') .  After m iterations, the  correlation between these vertices are 

s, - (1 - @ ( n c - ' ) ) m .  (4.5) 
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The exponential autocorrelation time (of a global quantity X, such as the path length 
between the vertices, or the Euclidean distance between the vertices) can be esimated 
from this expression (for a similar analysis involving the pivot algorithm and the self- 
avoiding walk, see Madras and Sokal (1988)). We find 
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T ~ , ~ ( B )  = o(n'-') iterations. (4.6) 

We calculate the mean field value of E in appendix A to be 1/2. Therefore, the best 
possible behaviour for the algorithm is when 

T , , ~ ( B )  = O(n'")  i terations.  (4.7) 

(If we express this in units of n iterations, as we do in equations (4.1)-(4.4), then 
we have T , , ~ ( B )  - n-0.5 for the best possible behaviour ofalgorithm B.) Thus, the 
data in table l ( b )  tell us that T is between O ( 6 )  and O(n) iterations in four and 
more dimensions. In general, the autocorrelation times will depend on other factors, 
such as the acceptance fraction of moves involving large subtrees. We discuss this in 
the next section. 

Tabk 2@). The acceptance fraclion of algonlhm A, ft, in two and lhree dimensions. 
Error bars are standard deviations. 

4.2. The acceptance fraction of proposed moves 

As explained in section 2.3, we expect that the acceptance fraction of algorithm A 
will converge to a constant value, as n tends to infinity. The acceptance. fractions of 
algorithm A in two and three dimensions are listed in table 2(a).  We obtained the 
data over 40000nri observations, where the T: are listed in table l ( a ) .  'lb obtain 
an estimate of the limit C in equation (2.19), we assume that 

f," = c t yn-6 (4.8) 

where C ,  y and 6 are parameters which we should obtain by a weighted least squares 
fit to the data in table 2(a) .  This form assumes possible non-analytic terms in f,", 
and it seeks to estimate the largest of them. From a three-parameter weighted least 
squares f i t  to the data we find that 

0.0897 f 0.0007 i f d = 2  
0.168 + 0.002 i f d = 3  

lim f,̂ = 
n-m (4.9) 
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Table 2(b) .  The acceptance fraction of algorithm B, fz, in two, three, four, eight and 
nine dimensions. Error ban are standard deviations. 

25 0.22596 (92) 0.4301 (11) 0.5733 (11) 0.80441 (81) 0.82925 (76) 
50 0.17550 (70) 0.36767 (76) 0.51964 (74) 0.78764 (60) 0.81453 (56) 

100 0.14950 (50) 0.32980 (52) 0.48130 (53) 0.77509 (44) 0.80570 (40) 
2011 0.!3650 (30) 0.?06!9 (39) !3.456% (59) 0.76852 (21) G.8Md2 [29) 
300 0.13182 (29) 0.29736 (32) 0.44613 (33) 0.76545 (26) 0.79876 (24) 
400 0.12912 (25) 0.29342 (28) 0.44063 (28) 0.76356 (22) 0.79697 (20) 
600 0.12755 (20) 0.28848 (25) 0.43371 (23) 0.76148 (18) 0.79585 (17) 
800 0.12651 (17) 0.28622 (21) 0.43015 (20) 0.76037 (16) 0.79516 (15) 

1200 O.12MS (15) 0.28325 (18) 0.42609 (15) 0.75900 (13) 0.79428 (12) 
1600 0.12466 (14) 0.28236 (16) 0.423% (15) 0.75843 (11) 0.793951 (97) 

,-A, 

The error bars are 95% confidence levels. In both cases, the value of 6 was close to 
1 (1.02 i 0.05 and 0.94 i 0.05 for d = 2 and d = 3 respectively). 

We expect that algorithm B will have a higher acceptance fraction than algo- 
rithm A, since we will have all the succesful transitions which occur in algorithm A, 
as well as succesful transitions involving branches of different sizes. The acceptance 

dimensions. Assuming equation (4.8) again, we find that 
fractions of a!gorithm I! are !isred in tab!e. 2(b) fer hue, three, fe??r, Pight 2nd ninc 

0.1229 h 0.0003 i f d = 2  
0.2761 i 0.0005 i f d = 3  
0.4114 i 0.0004 i f d = 4  I 0.7920 i 0.0003 if d = 9. 

(4.10) lim f," = 
n-m 

(We discuss the case d = 8 below). We find that 6 is close to 1 only in two 
dimensions (6 = 0.98 i 0.04). In three dimensions we find that 6 = 0.79 i 0.02, in 
four dimensions 6 = 0.62 f 0.02 and in nine dimensions 6 = 0.71 i 0.03. The rate 
of approach to the limit is considerably slower than n-l in these three cases. 

We see in tables 2(a) and 2(b) that the confidence intervals on our data points 
are very small (a few tenths of a per cent at most). We expect that the presence of 
a term that goes to zero slower than a power of n will probably spell difficulty for 
our fitting algorithm. In fact, in eight dimensions Newton's method fails to converge 
for the data in table 2(b). This suggests that there is a term which converges slower 
than a power of n. One way of dealing with this is to assume that 

f," = C+yllognl-6.  (4.11) 

A weighted least squares analysis gives 

lim f," = 0.7484f 0.0007 if d = 8. (4.12) 

We obtain 6 = 2.12 h 0.07. (Tb check assumption (4.11) we plotted Iog(f! - C) 
against log /log n1 in eight dimensions using C-from equation (4.10). The result was 
a straight line. The analogous plot in nine dimensions was strongly curved.) 

The acceptance fraction of algorithm B increases significantly with the dimension, 
which suggests that the algorithm is more ellicient in higher dimensions. lb examine 

n-m 



318 E J Janse van Rensburg and N Madras 

size (m) 

Flgurr 3. The size distribution of proposed branches in the algorithm. The data is from 
trees of size 800. 

this suggestion more precisely, we consider the mean size of the proposed branches 
and the mean size of the accepted branches in different dimensions for lixed n (the 
number of vertices in the tree). In figure 3 we plot the number of proposed branches 
of size m against m on a linear-logarithmic scale. The number of iterations was 
8MMMM and n was 800. We see that the biggest branches are proposed in two 
dimensionsi and that the incidence of big proposed branches declines as we increase 
the number of dimensions. In fact the mean size of a proposed branch declines from 
51.4 in two dimensions, through 35.7 in three dimensions to 29.9 in four dimensions, 
23.6 in eight dimensions and 23.2 in nine dimensions. While these numbers at first 
sight seem to indicate that algorithm B will be more successful in lower dimensions, it 
is really the acceptance fraction of the larger branches which will make the difference. 
In figure 4 we plot the acceptance fraction of branches of size m, f:(m), against m 
for algorithm B. We see that the acceptance fraction for a given value of m increases 
rapidly with dimension, reflecting the behaviour of the acceptance fraction integrated 
over m. Combining the above data, we calculated the mean size of the accepfed 
branches: This is only 2.45 vertices in two dimensions, and increases through 4.85 in 
three dimensions to 8.61 in four dimensions, 19.61 in eight dimensions and 20.26 
in nine dimensions (for eight and nine dimensions these are 83% and 87% of the 
proposed branch sizes respectiveiy). rhus, even though the mean size of the proposed 
branches decreases with dimension, we find that the mean size of branches which are 
involved in successful transitions increases with the number of dimensions. We expect 
therefore that algorithm B will perform more effectively in higher dimensions. These 
effects can also be seen in the scaling of the autocorrelation time with n, which we 
discussed in section 4.1. 

4.3. The mean square radius of gyralion and the mean span 

The mean square radius of gyration, ( r z ) ,  and the mean span, (s), of trees measure 
a universal length scale defined by the exponent U on the lattice. ?b estimate U, 
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Figure 4. The acceptance fraction of branches of size m. ?he higher the number of 
dimensions, the higher the acceptance fraction. More interesting, 1he curves do not go 
to zem with increasing branch size, but reach a plateau. I t  is a l m o ~ l  as likely tar a 
branch of size 400 to be accepted as a branch of si2e 100. The dala is from trees of 
size ann. 

we begin with the scaling relation (T ' )  - An2". We can write this asymptotic 
relation as an equality with (infinitely many) correction-to-scaling terms: ( r2 )  = 
An2"(1 + bn-A + . . .). Our job is to fit a curve ( r 2 )  = f ( n )  to the data. There are 
mo o~vious c~oices for ['ne form of we shuuid eiimindie aii of the 
correction-to-scaling terms, giving the two-parameter family of curves 

cume: 

( T ~ )  = AnZ" (4.13) 

or else we should eliminate all but the dominant correction, giving the four-parameter 
family 

(T ' )  = An2"(1 + bn-A) .  (4.14) 

The form (4.13) is appropriate if the values of n under consideration are all large 
enough so that the actual corrections to scaling are smaller than the statistical errors 
in the data; thus, if a log-log plot of the data is clearly linear, then we should be 
>'lLIJIIC" L l l d l  w c  I I C  111 LEI* " J J L " p " L 1 c  'C~""C 'Ill" nvan n n u .  L1.S L Y L I B I  ,-.x,p ("L 

course, one should also check fits of the form (4.14) as a standard procedure, even 
if the plot appears very straight to the eye,) On the other hand, if this plot shows 
strong curvature, then our first choice should be the form (4.14). Of course, there 
is no guarantee that the best cuwe of the form (4.14) will reflect the true value of 
A, since we do  not know the size of the omitted correction terms (when n is small, 
the omitted terms are large, so it is hard to see A from data corresponding to small 
values of n; while when n is large and the omitted terms are small, then the included 
term B n - A  is also small). It is very likely that one ends up estimating some effective 
exponent A,, which has no intrinsic physical meaning. Thus we take the cautious 
view that unless the data speaks very strongly to the contrary, the parameter A in 

n..s:nC...4 .Ln* ...- " - ~  :- .LI1 "".,__ .,.+:" , . ,nwb .&+h +ha fnrm l d  121 Inf 
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(4.14) is no more than an aid to the extrapolation of a finite amount of data into the 
n - 00 asymptotic regime. In the data presented in this paper, we find no strong 
evidence for any particular values of A; instead, the best that we feel justified in 
doing is testing the consistency of other researchers' values of A with our data. 

In practice, one would like to perform linear least squares regressions. This is 
accomplished by taking the logarithms of (4.13) and (4.14). The scaling assumptions 
are then 
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log(r2) = a + 2v log n 
log(r2) = a + bn-A + 2vlogn.  

(4.15) 
(4.16) 

If we fuc A in (4.16), then v is obtained by a linear regression. The data points 
from the smallest trees will suffer most from corrections, so we attempt to minimize 
LllCll LIIIIUGIICC vy rllruwrrrg away "ala purrtra ,lull, LllC *lllallc.l L L c c > .  w= G>L,,L,a,c L U G  

parameter v by performing weighted least squares regressions for the model (4.15), 
in which the weights are determined by the estimated error bars. The best choice 
of nmin (the smallest value of n that we do not throw away) is determined by the 
associated x2 statistic: the (weighted) sum of the squares of the distances of the data 
points from the fitted curve (see e.g. Silvey 1975). When the model is correct, this 
statistic has a xi distribution (here I C ,  the number of degrees of freedom, equals the 
number of data points used minus the number of model parameters that we are trying 
to estimate). Since our scaling assumptions are imperfect, a typical regression will 
provide best estimates of our parameters in a biased fashion: there is a systematic 
error present. We can attempt to estimate this error, where possiblc, by comparing 
results from two different scaling assumptions. In most cases we can compare the 
results from a two-parameter fit (4.15) to a three-parameter fit (4.16). 

Table 3. The mean span of trees. Error bars are standard deviations. 

&LA:- :..n..---- L.. .,. :..- ~ ... A,..,. -- :-.- c-_... .L̂  ".....I,-- 117,. ,.".:...".-.I.̂  

" Sn (ZD) 3n (3U) 3" ( 9 0 )  

25 
50 

100 
200 
300 
400 
600 
800 

1200 
! L K  

6.842 (32) 
11.147 (22) 
17.915 (42j 

36.79 (11) 
28.188 (73) 

44.67 (14) 
58.60 (21) 
69.70 (2h) 
90.48 (36) 

! f i ? , q  IC<\ 
\I-., 

4.2107 (59) 
6.4020 (88) 
9.471 (13) 

13.773 (20) 
17.039 (23) 
19.821 (28) 
24.440 (35) 
28.358 (39) 
34.929 (51) 
4G.3PL IC'' Y ' ,  

3.2197 (44) 
4.7449 (58) 

9.3560 (99) 
6.7354 (75) 

11.2h4 (12) 
12.835 (13) 
15.378 (16) 
17.444 (17) 
20.925 (20) 
2 3 . y  177, 

I--, 

1.9026 (21) 
2.7970 (29) 
3.8502 (35) \ ,  
5,1000 (44) 
5.9578 (49) 
6.6149 (52) 
7.h392 (61) 
8.4546 (64) 
9.6h98 (71) 

1 0 6 1 < C  ,771 
."..I. _ _  ,.,, 

1.7510 (19) 
2.5883 (25) 
3.5669 (32) 
4.7410 (39) 
5.5208 (43) 
6.1331 (47) 
7.0699 (53) 
7.7848 (58) 
8.9017 (64) 
9.778! $9)  

We examine the mcan squarc radius of gyration (with scaling assumptions (4.15) 
and (4.16)) and the mean span (with scaling assumptions analogous to (4.15) and 
(4.16)) for each of the dimensions considered in our simulations. We list our results 
in tables 3 and 4. In what follows wc give all statistical error bars as 95% confidence 
intervals. 
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Table 4. The mean square radius of gyration of trees. Error bars are standard deviations. 

n e, (W)  (3D) (4D) .2, (W) r? ( 9 ~ )  

25 8.181 (35) 4.673 (14) 3.7028 (86) 2.8717 (46) 2.8108 (42) 
50 19.43 (IO) 9.054 (28) 6.460 (16) 4.5208 (69) 4.3829 (65) 

100 46.89 (29) 17.823 (55) 11.293 (26) 6.8984 (96) 6.6559 (91) 
200 11240 (80) 34.75 (12) 19.686 (45) 10.356 (14) 9.948 (13) 
300 186.3 (15) 51.66 (19) 27.263 (60) 13.053 (16) 12.479 (15) 
4W 271.2 (22) 68.73 (26) 34.312 (76) 15.3% (18) 14.597 (16) 
6W 474.7 (44) 102.51 (37) 47.72 (IO) 19.269 (21) 18.238 (19) 
800 654.0 (66) 136.25 (51) 60.31 (13) 22.635 (23) 21.298 (21) 

12W 1093.0 (13) 203.97 (83) 84.64 (17) 28.211 (26) 26.503 (24) 
I6W 16220 (22) 270.6 (11) 107.27 (22) 33.w8 (29) 30.862 (26) 

4.3.1. The mean square radius of gyration. 

Two dimensions. A log-log plot of the mean square radius of gyration against n 
(figure 5) shows no evidence of curvature, but a two-parameter fit to the data gives a 
very poor xz statistic ( a minimum of 28.5 at nmin = 25 with 8 degrees of freedom). 
A close examination of figure 5 indicates that the point at n = 600 seems to be off 
the regression line. If we examine our data without this point, then x: = 12.53, 
(< 95%). We conclude that the data point at n = 600 is an outlier and we estimate 
that U = 0.6326 f 0.0019. 
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Figure S. The mean square radius of gyration of trees ploltcd againsl n on logarithmic 
axes. 

If a three-paramcter analysis oC the data is performed, where we assume equation 
(4.16), then we are unablc to minimize the x2 statistic by tuning A. Instead, we find 
that x2 decreases slowly as we take A to zero. It seems therefore plausible that 
there is a very weak correction present. TO assess the effect of this correction on our 
results, we can fix A at some value, and find a best estimate for U (it would not 
be unreasonable to choose A = 0.5: while this is not the best value, it nevertheless 
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indicates the size of a systematic error in the two parameter fit by showing the 
dependence of v on variations of A; if there are no corrections, then the amplitude 
of the correction should be near zero, and v will be consequently independent of A). 
Our regression analysis with A = 0.5 gives x: = 4.65 (< 75%). The best estimate 
is v = 0 . 6 4 2 2 i  0.0071. We obtain our best estimate of U by taking the average of 
the values produced by the two regressions. A systematic error is estimated by the 
difference between the best estimate (of U) and either of the ouo regressions. The 
statistical error is taken as the maximum from the two regressions. We find 
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ur = 0.6374 f 0.0071 f 0.0048 (4.17) 

where the format is besl value f 95% confidence inrerval i systematic error. The 
subscript r is to emphasize that we obtained this value from the mean square radius 
of gyration. 

Three dimensions. An examination of the data in figure 5 shows a slight deviation from 
a straight line at the smaller n values: the curve is slightly convex. A two-parameter 
fit is good when nmin = 200 (xz = 1.10, < 50%). The value of the exponent is 
v = O.4939fO.0021. The same behaviour is observed for a three-parameter fit as in 
two dimensions: the xz statistic decreases with A. We follow the same strategy here; 
we assume A = 0.5 to gauge a systematic error in our analysis. A fit with nmin = 25 
is good (xg = 4.5, < 50%). The result for the exponent is U = 0.4981 i 0.0031. 
We can now make our best estimate: 

ur = 0.4960 i 0.0031 i 0.0021. (4.18) 

Four dimensions. We find that there are in general strong corrections to scaling 
here. The plot (figure 5) looks very straight to the eye, but a two-parameter fit 
is not good unless we take nmin = 400. Then xg = 5.91, < 90%. This gives 
U = 0.4117 f 0.0019. A three-parameter regression behaves as in two and three 
dimensions, so we took h = O S .  For nlnin = 200 we find x: = 2.7, < 50%. This 
gives v = 0.4282 i 0.0079, Comparing these results, we find our best estimate 

U, = 0.4200 i 0.0079 & 0.0083. (4.19) 

Eight dimensions. In eight dimensions we expect logarithmic corrections to scaling. 
Examination of the data (figure 9, howcver, shows that it is very difficult to decide 
whether we see a power law correction as opposed to a logarithmic correction. There- 
fore, we analyse the data here as in lower dimensions, and we treat the corrections 

n is not large enough to exposc a logarithmic correction. The power law assumption 
is only an artifact used here to aid our numerical extrapolation.) The plot (figure 
5) shows a slight curvature. A two-parameter fit does not provide satisfactory results 
here. A three-parameter fit with A = 0.556 and nm!, = 25 gives xz = 6.5, < 75%. 
This gives U = 0.2651 i O . O O 1 O .  7b find a systematic error, we examine the sensitiv- 
ity of v to the paramcter A. A convenient ad hoc approach is to change the value of 
A until the value of the xz statistic has doubled, and then to vary nmln to find v for 
these (now fixed) values of A. Our reasoning is as follows. The original xz statistic 
measures how well we can choose a value of A to make the model (4.16) fit the data. 
The value of A which is ‘best’ in this sense may be far from the ‘true’ value, So we 

io scaiing as a hindrance to exiraction of the criiiai exponen&, (it seer,s 
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must guard against the misspecification of A in case the resulting U is too sensitive 
to it. 'RI get an idea of the systematic error, then, we also want to examine fits when 
we do not have the freedom to vary A. Our criterion chooses new values of A where 
the fit is decidedly poorer, hut where we can still find reasonable fits by varying nmin. 
In the present case, the xZ statistic is doubled at A equal to 0.705 (where we find 
U = 0.2682f0.0016 (nmin = 100)) or 0.422 (where we find U = 0.2594f0.0017 
(nmin = 50)). Comparing the results, we find that our best estimate is 

U, = 0.2651 f 0,0010 * 0.0057. (4.20) 

The statistical error is the 95% confidence interval obtained at A = 0.484, where 
we obtained the best value for U. The systematic error is the maximum difference 
between the best estimate of U, and the estimates obtained from the fits where the 
x2 statistic was doubled. This answer is close to the expected mean field result, which 
is 0.25. 

Nine dimensions. The situation is similar to eight dimensions. We find with A = 
0.505 that U = 0.2560 f 0.0010 ( x i  = 5.1, < 50% and nmin = 25). The 
x2 statistic doubles if A = 0.614 (U = 0.2608 f 0.0008 (nmin = 25)) and if 
A = 0.398 (U = 0.2487 f 0.0012 (nmin = 25)). Comparing these results we find 
that 

vr = 0.2560 i 0.0010 f 0.0073. (4.21) 

4.3.2. The mean span. 

Two dimensions. A two-parameter fit gives a poor x2 statistic (a minimum of 18.6 at 
nmln = 100 with 6 degrees of freedom). This value is over the 99.5 percentile range, 
so that we do not have much confidence in this fit. A close examination of the data 
shows that the point at  n = 600 seems to be off the regression line in two dimensions. 
If we reanalyse our data with this point deleted, then x: = 8.4, (< go%), a dramatic 
inprovement, where nmjn = 100 as before. We therefore conclude that the data point 
at n = 600 is an outlier. We estimate U = 0.6533 f 0.0028 from this regression. 

As an alternative, we can instead perform a three-parameter analysis of our data. 
If we ignore the data point at  n = 600, then the best x2 statistic is obtained at 
A = 0.915 with nmjn = 25. We find ~2 = 6.9 (< 90%). Here, we estimate 
U = 0.6444f 0.0019. We can now calculate a best value of U by taking the average 
of the values produced by the two methods, and a systematic error by considering 
the difference between this average and either of the two regressions. We take the 
statistical error as the maximum from the two regressions. We find 

us = 0.6489 f 0.0028 f 0.0045. (4.22) 

The subscript s is to emphasize that this value was obtained from the mean span 
data. 

Three dimensions. The xz statistic in a two-parametcr linear regression decreases fast 
in value with increasing n,,,,". For nmln = 300 we find that ~ 4 2  = 7.72 (< 90%). The 
value of the exponent is U = 0.5157 i 0.0020. A three-parameter analysis is very 
good. We find a minimum in x2 at A = 0.734 (x.2 = 1.26, < 50%, nmln  = 25). 
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The exponent is U = 0.5034 f 0.0018. We can now calculate the best value of U 
from the span data: 
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us = 0.5096 i 0.0020 f 0.0062. (4.23) 

Four dimensions. We find that there are strong corrections to scaling here. A two- 
parameter fit is found to be unsuitable for any nmin in this case. The xz statistic 
decreases fast with increasing nmin, bur never to an acceptable value. In contrast 
to this, a three-parameter fit with A = 0.78 works well (x: = 8.7, < 90%, and 
nmin = 25). The result for the exponent is U = 0.4303f0.0013. ’Ib find a systematic 
error, we examine the sensitivity of U to the parameter A. The x2 statistic is doubled 
at A = 0.66 and A = 0.91. At A = 0.66 we find that U = 0.4254 0.0020 
(nmin = 50) and at A = 0.91 we find that U = 0.4342 f 0.0016 (nmin = 50). A 
comparison gives 

U$ = 0.4303 f 0.0013 i 0.0049. (4.24) 

where the statistical error is the 95% confidence interval obtained 

Eight dimensions. We analyse the data here as for the mean square radius of gyration 
in eight dimensions. Two-parameter fits are poor, so we assume a power law correc- 
tion and proceed as in four dimensions for the mean span. The best fit is obtained for 
A = 0.484 and nmin = 50 (x: = 14.5, < 99%). This gives U = 0.2878 f 0.0022. 
We examine the dependence of U on A now. The x2 statistic doubles if we take A 
to be 0.327 or 0.663. At these values we find the best fits (Y = 0.2540 f 0.0048 
(nmjn = 100)) and (Y = 0.3021 f 0.0044 (nmin = 200)). Comparing the values of 
U from these fits to our best estimate, we find that 

us = 0.288 i 0.003 f 0.034. (4.25) 

Nine Dimensions. If we repeat the analysis here (similar to that in eight dimensions), 
then we find a best estimate at A = 0.627 where U = 0.2975 f 0.0025 (x i  = 3.3, 
< 10% and nmin = 100). The value of the x2 statistic doubles at A = 0.687 
(U = 0.3028 f 0.0023 if nmin = 100) and A = 0.566 (U = 0.2922 i 0.0018 if 
nmin = 50). Comparing these results we find that 

U$ = 0.2975 i 0.0025 f 0.0053. (4.26) 

4.3.3, E&cussion. it is yenerdiiy ‘oeiieved mean & a poatiy behaved 
variable, and that the calculation of U from it is not reliable (in support of this belief, 
observe that (4.25) and (4.26) are far from the ‘known’ value 1/4). As our best 
estimates we take results from the analysis of the mean square radius of gyration. 
The results for the exponent U are consistently near the Flory values for U, where 
U = 5 / 2 ( d  + 2) (Isaacson and Lubensky 1980, sec also Bovier el a /  1984). Of 
particular interest are the results in three dimensions. The results from the mean 
span barely exclude 0.5, and thc results from the mean square radius of gyration 
include the expected value well within error bars. The estimates of U are consistent 
with 0.5. We therefore conclude that we see no evidence that equation (1.1) breaks 
down in this calculation. 
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In eight and nine dimensions we expect that U = 0.25. Unfortunately, our data 
suffer from strong corrections to scaling in these cases. (In general, the corrections 
got worse with increasing dimension.) We extracted the best estimates for U Only 
with great difficulty, and we urge the reader to reanalyse the data in tables 3 and 
4. In eight dimensions the estimate from the mean square radius of gyration data 
excludes the expected value, but, due to a large systematic error, the estimate from 
the mean span is consistent with the expected value. In nine dimensions the situation 
is reversed. The estimate from the mean span data is inconsktent with the expected 
value, hut then we note that the mean square radius of gyration gives an estimate 
which is close to 1/4. 

The value of A has been esimated using series analysis in two dimensions by 
lshinabe (1989) (A = 0.635 f 0.030). As a consistency check, we performed a 
regression for the mean square radius of gyration data assuming this value of A 
in (4.14). We find that v = 0.6404 * 0.0058, A = 0.1248 i 0.0090 and b = 
0.47 f 0 . 3 3 ,  while xz = 4.8 (< 50%). (Error bars are 95% confidence intervals.) 
These are consistent with the exact enumeration results (of Ishinabe), which are 
U = 0.644 k 0.004 and A = 0.1156. Observe that k i n g  A at 0.635 does nof 
change the estimate of U by more than one standard deviation, and is therefore 
statistically indistinguishable from (4.17). If we consider the mean span instead, then 
a linear regression is good with xz = 9.7 (< 90%). We find U = 0.6357 + 0.0044, 
while A = 1 . 0 1 i 2 . 6 7  and b = -1.05 +0.13. Thk value of U is not consistent with 
(4.22), but the sensitivity of U on A is consistent with the idea that the mean span is 
a poorly behaved variable. (In these regressions we discarded the point at 7~ = 600, 
which we believe is an outlier.) 

In three and more dimensions we can use the values of A from Adler el a1 
(1988). In three dimensions a regression with A = 1.3 is fine (x; = 11.7, < 95%). 
We find v = 0.4921 k 0.0015, A = 0.189 i 0.004 and b = 0.49 i 0.16. This 
value of U is in the confidence interval of (4.18), and probably suffers from a sizable 
systematic error (since A is not at an optimal value in the regression). An attempt 
to fit the mean span data with A = 1.3  is not good. In four dimensions A = 0.8 
(Adler et a1 1988). An attempt tfl fit the mean square radius of gyration data to 
this A is not good. The mean span is better; as reported, the optimal value of A is 
n 70 ... _.  - n ~ ? n ?  I n nnqi A - n nna I n nnn L - Q c I" 7 U"-,, u.10 ,  ~ . * 1 I ~ , C . Y - U . l r ) u r ) I u . u u L I ,  ~ - u . i . i . O I u . u u i . O l l l "  " - - - i . u T " . , .  ',G,V 

x: = 8.7, < 75%. 
In summary, in two and three dimensions, we find little evidence for preferring 

one value of A over any other. In four dimensions, the data from the span does seem 
to suggest A = 0.78 i 0.10, hut the data from the radius of gyration does not really 
support any particular value. We leave the readers to draw their own conclusions; 
our own opinions are summarized at the beginning of this section (below (4.14)). 

4.4. The mean longesi paih and mean branch size 

In section 2.3 we considered the mean longest path in a tree, ( p , ) ,  and the mean 
branch size, (b") ,  of t ree .  We argued that p = E ,  where (p,) - np, and ( b , )  - n'. 
In this section we consider the estimation of p and 6 from our data. A mean field 
calculation gives L = 0.5 (appendix A). The data are listed in tables 5 and 6. We 
proceed as in section 4.3. In each case we attempt two fits to the data; a comparison 
gives us a systematic error. If one of the  fits is had, then we consider the  variation in 
the exponent with A to estimate a systematic error. We plot the mean longest path 
and the mean branch size of the trees in figures 8 and 9. We cannot visually detect 
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Table 5. The mean longest path of trees. Error ban are standard deviations. 

" 
25 
50 
1W 
2W 
300 
4 w  
600 
8W 

12W 
16W 

Pn (W)  

15.792 (33) 
26.560 (70) 
44.21 (14) 
74.05 (26) 

122.15 (50) 
98.92 (28) 

166.15 (73) 
202.83 ( 9 4  
274.2 (15) 
343.6 (2G 

Pn (ID) 

14.435 (25) 
22.866 (41) 
36.364 (68) 
57.06 (12) 
74.57 (16) 
90.01 (zoj 

117.36 (25) 
141.48 (30) 
185.26 (42) 
222.90 (53) 

Pn (40) Pn (ED) 

13.959 (23) 13.453 (21) 
21.697 (37) 20.463 (32) 
33.442 (55) 30.601 (48) 
51.300 (87) 45.051 (70) 
65.62 (11) 56.564 (90) 
78.12 j14j 65.96 (il) 

1W.02 (17) 82.44 113) 
119.74 (zoj 96.40 (I$ 
153.74 (26) 119.59 (19) 
182.01 (29) 139.07 (23) 

13.354 (21) 
20.376 (33) 
30.354 (48) 
44.758 (72) 
55.869 (87) 

81.06 113) 
65.37 (11) 

Table 6. The mean branch size of lrees. Error bars are standard deviations. 

25 
50 

100 
200 
300 
400 
600 
8W 

1200 
1600 

4.172 (11) 
6.878 (20) 

11.300 (4oj 
18.810 (70) 
25.12 (11) 
31.03 (14) 
42.14 (2Oj 
51.40 (27) 
69.34 (40) 
86.87 (54) 

3.7966 (89) 
5.919 (14) 
9.264 (22) 

14.472 (34) 
18.893 (48) 
22.751 (57) 
29.654 j69j 
35.66a (82) 
46.56 (12) 
56.07 (15) 

3.6668 (80) 
5.588 (12) 
8.515 j i 7 j  

12.917 (25) 
16.509 (29) 
19.561 (34) 
25.016 (40) 
29.862 (48) 
38.318 (60) 
45.464 (68) 

3.5476 (75) 
5.256 (11) 
7.719 (14j 

11.271 (18) 
13.998 (21) 
16.303 (22) 
20.283 (25) 
23.597 (28) 
29.191 (32) 
34.012 (34) 

3.5203 (74) 
5.202 (11) 
7.643 (14j 

11.136 (17) 
13.839 ( I$  
16.132 (22) 
19.953 (zsj 
23.166 (28) 
28.672 (30) 
33.311 (33) 

any curve in any of these plots, so corrections to scaling are less 'visible' here than 
in figures 6 and 7 where we considered the mean square radius of gyration and the 
mean span. We fit these data to either a two-parameter assumption 

(P,) = DnP (4.27) 

or a three-parameter form with a power iaw correction 

( p , )  = nP( D + ~ n - ~ )  (4.28) 

similar to the assumptions for the mean span and mean square radius of gyration. 
We assume similar functions for the mean branch size and the exponent e .  

Two dimensions. A two-parameter fit to the mean longest path data is good with 
nmin = 100 (xz = 10.9, < 95%). The exponent is p = 0.7351 f 0.0034. If we 
attempt a three-parameter fit then we observe that the xz statistic gets smaller as 
A gets smaller; it is also not very sensitive to changes in A. We therefore assume 
that A = 0.5. The hest fit is with nmin = 50 (xz = 11.4, < 95%). We find 
p = 0.738 f 0.01 1. A camparkon gives our best estimate 

p = 0.737 f 0.01 1 f 0.002. (4.29) 

A two-parameter fit to the mean branch size data is good with nmin = 100 
(x: = 10.5, < 90%). The exponent is E = 0.7328 f 0.0054. A three-parameter 
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fit behaves as for the mean longest path. The best A is small, but we observe that 
the x2 statistic does not change much with A. If we fix A = 0.5, then a fit with 
nmin = 25 is very good (x; = 9.0, < 90%). The exponent is E = 0 .7388f  0.0074. 
If we compare these results, then we find our best estimate 

t = 0.7358 f 0.0074 f 0.0030. (4.30) 

Three dimemtons. The mean longest path data is well described by a two-parameter 
fit if nmin = 100 (xf = 3.3, < 25%). We find p = 0.6545 f 0.0017. A three- 
parameter fit works well with A = 0.78 (nmin = 25, and x f  = 8.6, < 90%). We 
find p = 0.6534 f 0.0026. If we compare these results, then 

p = 0.6540 f 0.0026 f 0.0006. (4.31) 

The mean branch size fits well to the two-parameter assumption with nmin = 25 
(xi = 12.0, < 90%). The value of the exponent is E = 0.6480 f 0.0012. The 
three-parameter fit is best if A = 0.65, but the x2 statistic does not vary much with 
A (x f  = 1.92, < 10%). We find E = 0.6530 f0.0034. If we compare these results 
then 

c = 0.6505 f 0.0034 f 0.0025. (4.32) 

Four dimensions. A two-parameter fit to the mean longest path data with nmin = 100 
has x; = 15.6, < 99%. We find p = 0.6117 f 0.0014. A three parameter 
fit with A = 1.11 has xg = 15.0 (< 99%) with nmin = 25. The exponent is 
- - n cnnc ~n n n i a  T C . . . ~  n,......-.o t~~~~ ..a-..~+o +L-- 
/J - ".UUICI 1 V . V U I U .  11 w c  w,,,ya,c ,,,r.Yc Ica"I1a) L l l L l l  

p = 0,6106 f 0.0016 f 0.0012. (4.33) 

A two-parameter fit to the mean branch size data has ,yg = 18.3 (< 99%). 
The result is c = 0.60503 f 0.00092. A threc-parameter analysis indicates that 
the exponent is insensitive to the value of A. In fact, changing A from 0.2 to 1 .0 
does not change the exponent outside its 95% confidence interval of the estimate at 
A = 0.5. At A = 0.5 we find E = 0.6062 f 0.0060. A comparison gives 

c = 0.6056 f 0.0060 f 0.0006. (4.34) 

Y.6... Fioht r l imonc innr  I..,.-.Y.Y,..,, In -.. Aaht -.6... dimenrinns -....-.. " ._.." nnr eYnerts -I.r--." I - lnoarithmir . - ~  cnrrertinn In walino -.... b, 

but our numerical procedurcs cannot detect such behaviour. In fact, a power law 
assumption (such as equation (4.28)) is better in these cases. For the mean longest 
path, a two-parameter fit is very poor. A three-parameter At is good if A = 0.46 
( ~ 2  = 9.0, < 90%). We find p = 0.5166 f 0.0030. 'lb estimate a systematic error, 
we consider choices of A which double the  x2 statistic. If we compare the best value 
of p to regressions done at  A = 0.18 ( p  = 0.464 f 0.018 (n,,, = 50)) and 0.78 
( p  = 0.522 * 0.008 (n,," = 200)), then we find that our best value has a large 
systematic error: 

p = 0.517f0 .003f0 .053 .  (4.35) 
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A two-parameter fit to the mean branch size data with nmin = 200 is good 
(x: = 9.5,  < 95%). This gives 6 = 0.5306 f 0.0014. A three-parameter fit with 
nmin = 25 has x: = 3.9, < 50%, if A = 0.45. This gives c = 0.5161 f0 .0028 .  If 
we compare these results, then we find 

(4.36) 

Nine dimensions. In nine dimensions we expect mean field results for our exponents. 

we find xi = 6.4,  < 90%. which is acceptable. This gives p = 0.5326 f 0.0026. 
A three-parameter fit works well, xi = 2.6, < 25% and A = 0.52. This gives 
p = 0.5121 f 0.0028. If we compare these results, then we find our best estimate 

c = 0.5234 f 0.0028 i 0.0073. 

For the mean longest path a ouo parameter fit is not too good, b??! with nmin = 300 

p =  0 . 5 2 2 f 0 . 0 0 3 f 0 . 0 1 1 .  (4.37) 
The mean branch size data fits well to a two-parameter assumption if we take 

nmin = 300 (xi = 3.6, < 50%). This gives z = 0.5244f0.0016.  Athree-parameter 
fit is good if we take A = 0.31 and nmln = 25, then xi = 4.3 ,  < 50%. This gives 
z = 0.4968 f 0.0040. A comparison of these results gives our best estimate 

(4.38) 

4.4.1. Discussion. The mean field calculation in subsection 2.3.4 predicted that p = E. 
1110 ~ C C I I I O  ,U "C L l l C  LaJC 111 =act, YIIIIGIIJLUII L L I a L  WG CULIJIUGilLU 1.1 L I U >  ~ I c Y I a L I " I I ,  

where p and z agree consistently within error bars. In high dimensions p and E also 
turn out to be close to 1/2,  which we expected to be the case from the calculation 
in appendix A. 

4.5. The degrees of vertices 
We argued in section 2.3 that the number of vertices of degree i, ( t i ) ,  is expected to 
rise linearly with n. In view of assumption (2.20), we can now assume that 

We calculate the Ci for i = 1 , 2  and 3 by taking a numerical limit as we have done 
in section 4.2. Also, let 

= 0.511 f 0.004 f 0.014.  
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( t i ) / n  = ci + yn-'.  (4.39) 

2d  

(4.40) 1 , . . \ - F L  I ., 
'>41WI = ,7- Li\WI 

i=4  

be the number of vertices with degree greater than 3 in a tree w. In the same way, 
we shall calculate C b 4 ,  which we define to be the limit of ( t b 4 ) / n .  

Table 7. The fraction of wrlices of degree i. Error bars are standard deviations 

2 0.2637 (2) 0.4978 (2) 0.2134 ( I )  0.02513 (5) 
3 0.3096 (2) 0.4341 (2) 0.2075 (I) 0.04874 (6) 
4 0,3284 (1) 0.4110 (I)  0.2017 ( I )  0.05902 (4) 
8 0.3522 ( I )  0.3840 ( I )  0.1917 ( I )  0.07211 (3) 
9 0.3545 ( I )  0.3815 ( I )  0.1906 ( I )  0.07327 (3) 

We list our results in table 7. The data suggest that the Ci converge as the 
dimension increases. It would be interesting to determine if there is any theoretical 
basis for this behaviour. The error bars in table 7 are standard deviations. 
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5. Conclusions 

The introduction of large, non-local, elementary transitions in a Monte Carlo simula- 
tion of lattice (bond) trees proved very successful. We illustrated that the performance 
of the algorithm is enhanced significantly by comparison to an algorithm with only 
small elementaly transitions (algorithm A). In addition, the performance of algo- 
rithm B improves with increasing dimension, a theoretical limit on the growth of the 
exponential autocorrelation time, measured in CPU seconds, can he estimated from 
equations (4.7) and ( k 3 ) .  We find 

T,(B) - n CPU seconds. (5.1) 

Below the critical dimension of eight, we cannot expect such good behaviour: in 

algorithm B grow roughly like n2.' in two dimensions and like nl.' in three dimen- 
sions; the exponent decreases (to 1, we conjecture) as the dimension increases. For 
comparison, in the case of the pivot algorithm applied to self-avoiding walks, the 
integrated autocorrelation times are believed to be proportional to n in every dimen- 
sion (Madras and Sokal 1988). The pivot algorithm for polygons in three dimensions 
fared slightly worse: the integrated autocorrelation times were found to grow roughly 
as nl.' (Janse van Rensburg et a1 1990). However, our algorithm B was found to he 
much better than algorithm A, whose integrated autocorrelation times were found to 
grow roughly like n3 in both two and three dimensions. This may improve in higher 
dimensions, hut it can never be better than nz, by the following argument. We can 
think of algorithm A as 'picking' leaves from the tree and appending them elsewhere 
on the tree. Consider the correlation between two edges on the longest path of the 
tree. lb destroy this (conformational) correlation, algorithm A must remove edges 
from an endpoint of the  longest path until it has deleted at least one of these edges. 
Let the set of edges to be removed be coloured red, and let the rest of the tree he 
coloured blue. If an elementary transition removes a red edge and appends it to  the 
blue side, then this edge becomes blue, and vice versa. The number of red edges is 
O( n) (see the arguments in section 2.3). Since the algorithm moves edges between 
the red and blue sets, and within the red and blue sets, we can think of the number of 
red edges performing a random walk on positive integers. Therefore, the number of 
transitions required to remove all the red edges will be O(n2) .  Since each transition 
takes 0(1) CPU seconds, we find 
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r , (A)  - n2 CPU seconds. (5.2) 

This heuristic argument supports our belief that algorithm B is numerically superior 
to algorithm A. 

The grand canonical Monte Carlo algorithms for trees are necessary to estimate 
the exponent B (equation (1.2)), which we cannot extract from our data. For walks, 
the introduction of pivots into a grand canonical algorithm, such as the BFACF al- 
gorithm (Berg and Foerster 1981) improved the performance of the Monte Carlo 
simulation (see for example Caracciolo et a/ 1989). The way is now open for a similar 
development in the simulation of lattice trees; a hybrid algorithm consisting of the 
algorithm of Glaus (1985) supplemented with large non-local moves from algorithm B 
should perform much better than previous algorithms. 
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Table 8. Best estimates for the exponents U and p. The error bars are calculated by 
adding the 95% confidence interval to a systematic error. 
~ ~ 

Dimensions Y P 
~~ 

2 0.6371 f0.0119 0.136f0.013 
3 0.4960-1 0.0052 0.6523zt 0.0059 
4 0.4200f 0.0162 0.6081 f 0.0066 

n h l e  8 contains our best estimates of exponents in two, three, and four dimen- 
sions. For v, we take the estimates obtained from the mean square radius of gyration 
data as our hest estimates, and for p we take the average of the estimates from 
the mean longest path data and the mean branch size data (assuming of course that 
p = E). The error bars given are taken to be the maximum error in each of the 

statistical errors. Note that the exponent p is a new, intrinsic exponent for trees, 
measuring the mean path length between vertices in the tree. The fact that p < 1 
is interesting; it implies that in the scaling limit, the distance between two nearest 
vertices of degree other than two will go to zero. A tree will be a highly branched 
object, with an arbitrary number of branching points in every open subset of the tree. 

Table 9. The estimates for v from the literature. (a = Series expansion, b = Monte 
Carlo calculation, c = Exact enumeration of animals, d = Renormalisation group, e = 
Flory exponents, f = Dimensional reduction, g = Exact enumeration. h = Scanning 
Method). The error bars are those given by the authors. 
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Reference 2 dimensions 3 dimensions 4 dimensions 

Kune and Fisher (1Yi9)a - 0.5 0.425 

de Alcantara Bonfim er 01 (198o)c - 0.55 f 0.05 0.450 f 0.035 
Family (1980)d 0.637 
lsaacson and Lubensky (1980)e 0.625 0.5 0.417 

Parisi and Saurlas (1981)J - 0.5 
Parisi and Sourlas (1981)d - - 0.42 

Gaunt ci 01 (1982)g - 0.55 f 0.05 0.45 f 0.05 

Dhar (1983)f - - 0.417 

Redner (1979)b 0.57 f 0.06 0.45 f 0.06 - 

- - 

Gould and Hall (1Y81)b - 0.53 i 0 .02  - 

Seilz and Klein (1Y8Qb 0.615 0.46 - 
Derrida and de S e e  (1982)d 0.6408 f 0.0003 - - 

Bovier er 01 (19&l)b 0.6402f 0.0084 - - 
Margolina ei 01 (1984)g 0.640 f 0.004 - - 
Privman (1984)g 0.6394f 0 . 0 0 6 7  - - 

Caracciolo and GIaus (1985)b 0.635 f 0.015 - - 
Glaus (198S)b - 
Duarte (198i5)b 0.650 f0.015 - - 
Meiravilch (198nh 0.640 i 0.004 - - 
lshinabe (1969)c 0.644 i 0.004 - - 

- 

Alexandrowia (1985)O 0.64 f 0.03 0.50 f 0.03 0.42 f 0.03 

- 0.495 f 0.013 

Adler er a1 (1983)" - 0.500 f 0.010 0.425 f 0.015 

This paper (1991)b 0.637f0.012 0.4960f0.0052 0.420 f 0.017 

Finally, we provide a detailed comparison with results of previous estimates of the 
exponent v in table 9. In two dimensions the  best estimates are from renormalization 
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group calculations: Derrida and de Seze (1982) found U = 0.6408 f 0.0003 while 
KertQz (1986) estimated U to be 0.6406 f 0.0002. From a numerical point of 
view we expect exact enumeration to provide the best estimates for U (in analogy 
with the situation for walks). This is indeed the case, as we note in table 9. An 
exact enumeration by Margolina e1 a1 (1984) estimates U = 0.640 f 0.004 and a 
study by Ishinabe (1989) finds U = 0.644 ZL 0.004, while Meirovitch (1987) uses the 
scanning method (which can be considered a hybrid of exact enumeration and the 
Monte Carlo method of Rasenbluth and Rosenbluth (1968) (for walks) generalized to 
trees) to find that U = 0.640 f 0.004. Of the Monte Carlo simulations for trees the 
best estimate was produced by a simulation done by Bovier e1 a/  (1984) who found 
v = 0.6402 & 0.0084. The other Monte Carlo studies performed in the last ten 
years all have results of comparable accuracy, these are the simulations by Caracciolo 
and Glaus (1985) (v = 0.635 f 0.015), Duarte (1986) (U = 0.650 f 0.015) and 
ine resuits in this paper (U = 0.637 O.Oi2j. (pis we noted in section 2.2, the 
algorithm used by Duarte fails to satisfy detailed balance; however, his result includes 
the accepted value. I t  is difficult to guess what systematic error would be present 
in his data.) The total computing time involved in estimating U using algorithm B 
was about 11 hours of CPU time on a DEC5000 workstation. If we compare this 
fact to the results of Bovier et al (1984) and Caracciolo and Glaus (1985) we note a 
"'6 ""y1""C"L"L1L 1.. yC,L"""a"~, C**ll I, W C  ,ah- l l l l" abC"uIII L U G  J lVnrl  c " " 1 p L C 1 "  

used in thase studies. (Bovier e1 al (1984) performed a run of 180 hours on a CDC- 
1741720 while Caracciolo and Glaus (1985) performed a run of 380 hours on a VAX 
111780). In defense of the grand canonical algorithms we should note that they can, 
in addition to U, also estimate the growth constant and the specific heat exponent (e )  
in (he same run. 

Studies of trees in three dimensions are not as common as in two dimensions, 
The best estimate is given by the Monte Carlo simulation in this paper (U = 0.4960f 
0.0052), while a heroic effort by Glaus (1985) estimates that v = 0.495 f 0.013 
(using a grand canonical algorithm). In four dimensions a similar situation is found. 
The best result is given by the simulation in this paper (U = 0.420 f 0.017), the 
only other Monte Carlo result being that of Alexandrowicz (1985) who found that 
v = 0.42 * 0.03. We are not aware of any exact enumeration results in three and 
four dimensions. These Monte Carlo results are close to the 'exact' value 5/12 of v ,  
which resulted from Dhar's identification of directed animals (in d dimensions) and a 
lattice gas with extended hard cores in ( d  - 1 )  dimensions. Numerically, it is possible 
that even better results in three and four dimensions could be found by an exact 
enumeration study; however, with improving technology, the best numerical results 
will inevitably come from Monte Carlo studies since the effort in exact enumeration 
grows exponentially with increasing 7 1 .  
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Appendix A. Mean field theory for E 

Let 1,  be the number of t rea  (unrooted) with n vertices. Then it is believed that 
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1, - n-'X", with e given in equation (1.2). Pick an edge in a tree. This roots 
the tree at this edge. If we delete the edge, then we find two subtrees, one with 
(say) k vertices and the other with n - k vertices, rooted at the vertices incident on 
the deleted edge. The mean number of vertices in the smaller subtree (assume that 
k < n - k without loss of generality) is then given by 

E J Janse van Rensburg and N Madras 

We can now evaluate this expression to find 

(b,) - n3-'. ( k 2 )  

The mean field value of f3 is 512 (Bovier et a1 1984), so we have 

E = 112 (-4.3) 

in the mean field approximation. 
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