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Absiract. A new non-local algorithm for the simulation of trees on the lattice Z4 s
proposed. We study the implementation and the properties of the algorithm, and show
that it is decisively better than an algorithm which performs only local moves, We use
the new algorithm to investigate the properties of lattice trees in two, three , four, eight
and nine dimensions.

1. Introduction

The numerical and theoretical study of lattice trees provides a matural model for
calculating the properties of branched polymers in dilute solution. It is also belicved
that lattice trees share the same universality class as lattice animals (Lubensky and
Isaacson 1979, Seitz and Klein 1981, Duarte and Ruskin 1981}, so that the critical
exponents of animals can be determined numerically by investigating trees, which are
simpler to simulate than animals,

The critical exponents of animals in d-dimensions are related to the Lee—Yang
edge singularity (Parisi and Sourlas 1981, Fisher 1978, Kurze and Fisher 1979, Bovier
et al 1984) of the Ising model in an imaginary magnetic field in (d — 2)-dimensions
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through the relations

v(d+2) = (o(d) + 1)/d (11)
8(d +2) = o(d) + 2 (12)

where o is the exponent which controls the magnetization of the Ising model near the
edge singularity. The exponents v and 0 are defined by (r?), ~ n? and 1, ~ n=% 2",
where {r?), is the mean square radius of gyration of trees with n vertices, and ¢,
is the number of (unrooted) trees with n vertices. A is the lattice-dependent growth
constant of lattice trees. Since the Ising model is exactly solvable in zero and one
dimensions (¢{0) = —1, and o(1) = —1/2), we can get the ‘exact’ values §(2) = 2
and 0(3) = 3/2, and v(3) = 1/2. (Note that equation (1.1) breaks down if d = 0.)

Subsequent results indicated that the dimensional reduction used to derive equa-
tions (1.1) and (1.2) fails if the Ising model is in a real magnetic ficld (Fisher et al
1984, Imbrie 1984). It is therefore necessary to determine the validity of these equa-
tions by a high precision numerical simulation. To achieve this aim, several numerical
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studies have been performed (Glaus 1985, Duarte 1986, Duarte and Cadilhe 1989).
In this paper we aim to propose a better algorithm than those used in those studies,
and we use it to estimate v(d) and in particular to consider the validity of equation
11).

( Aside from their importance in statistical mechanics, lattice trees are also of
considerable interest in chemical physics as models of branched polymers in dilute
silution. There is an enormous literature on simulation of polymers in general (e.g.
Kremer and Binder 1988). Most of the Monte Carlo methods developed for branched
polymers are for trees with fixed topology, such as ‘stars” or ‘brushes’ (e.g. Carmesin
and Kremer 1988, Whittington et a/ 1986, Lipson et al 1987), rather than arbitrary
trees. (Polymer chemists’ emphasis is frequently on polymer dynamics, but non-local
algorithms such as ours generally only give information about static properties.)

An even more basic example of a random geometric object with non-local inter-
actions is the self-avoiding walk. The simplicity of this model makes for innovative
algorithm designs for exact enumeration studies and Monte Carlo simulations. Among
Monte Carlo algorithms, the pivot algorithm brought about the most dramatic im-
provement in the simulation of walks, especially when simulated in the canonical
ensemble (that is, with fixed length) (Madras and Sokal 1987, Janse van Rensburg et
al 1990). The basic idea of the pivot algorithm is the use of non-local ¢lementary
transitions; that is, it tries to change large parts of the walk all at once. Borrowing
from this idea, we shall consider an implementation of large, non-local elementary
transitions in a Monte Carlo simulation of lattice trees, and we shall show that this
brings about a dramatic improvement in the simulation.

Earlier studies of lattice trees and animals by exact enumeration and by Monte
Carlo methods (Peters et al 1979, Redner 1979, Gould and Holl 1981, Seitz and
Klein 1981, Gaunt e al 1982) that were concerned with estimating » had estimates
varying from 0.45 to 0.53 in three dimensions; a considerable spread of results. Glaus
(1985) and Caracciolo and Glaus (1984) performed a grand canonical Monte Carlo
simulation of Jattice trees estimating +/(3) = 0.495 £+ 0.013 in three dimensions and
v(2) = 0.635 £ 0.015 in two dimensions. These last results strongly support the
validity of the dimensional reduction leading to equations (1.1) and (1.2). In this
paper, we estimate u(3) = 0.4960 £ 0.0052 and v(2) = 0.637 £ 0.012.
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our algorithms and proves that they are ergodic and reversible, and discusses proper-
ties of lattice trees that we will study (e.g. radius of gyration, span, longest path and
mean branch size). Section 3 discusses the implementation of these algorithms on
the computer, with particular reference to the efficiency of the various steps. Section
4 is a detailed analysis of the numerical results of our simulations. Our conclusions
about out algorithms are present in section 5.

2. Basic definitions and methods

Let Z¢ be the d-dimensional hypercubic lattice. A laitice bond animal (or simply an
animal) is a connected subgraph of Z¢. We define a lattice bond tree (or simply a
tree) as an animal with no cycles. (A cycle is a walk containing at least two edges,
with all its vertices (or sifes) distinct, except the first and last vertices, which are the
same.) Therefore, on a tree, there is only one path between any two given points; it
is a simply connected object,
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Let w be a tree, and let v be a vertex in w. Then we say that v is a vertex of
degree 1 if there are i edges in w incident on ©v. An edge x in w is a [ea f if one
endpoint of x is a vertex of degree one. Deleting any edge of a tree results in two
connected components, each itself a subtree of the original tree; any subtree which
can be obtained by deleting a single edge is called a branch. Evidently, every leaf
corresponds to a branch consisting of one vertex, and vice versa; we shall sometimes
abuse our terminology by referring to a leaf as a branch consisting of one edge.

2.1. Canonical Monie Carlo algorithms for lattice trees

The symmetry group of the cubic lattices is the octahedral group O,. Every tree in
the lattice can be transformed by any element of O,, which is typically a reflection
or a rotation. We define now two possible algorithms for lattice bond trees in the
canonical ensemble (fixed number of sites n). Let d be the number of dimensions,
and suppose that w is an (unrooted) tree with n sites and (n — 1) edges.

Algorithm A: (Leaf-mover). In this algorithm we attempt only small moves on the
tree, ie. one edge at a time. The essential idea is similar to that of Duarte (1986),
and to the grand canonical algorithms of Glaus (1985), and Caracciolo and Glaus
(1984). The algorithm flows as follows:

Al. Pick an edge at random on the tree.

A2. If this edge is not a leaf, then we count this as a failed transition and go to step
Al. Otherwise, we delete the leaf,

A3. Pick a vertex on the rest of the tree (which has (n — 1) vertices).

A4, Try to append a leaf to this vertex by randomly choosing one of its 2d nearest
neighbours. If this creates a cycle then we count this as a failed transition and
we go to step Al, Otherwise, we have a succesful transition and we update the
old tree before we go to step Al for the next attempt.

Algorithm B: (Branch-mover). In this algorithm we attempt large, non-local transitions.
The essential idea of the algorithm is the following. We pick a branch in the tree
at random and we break it off. The branch is then transformed (e.g. rotated) by an
element of O,. We then attempt to append the branch at another location in the
tree. The algorithm flows as follows:

B1. Pick an edge at random in the tree.

B2. Delete this edge. This breaks the tree into two subtrees, with one subtree
typically bigger than the other.

B3. Find the smaller subtree and apply a randomly chosen e¢lement of the octahedral
group to it.

B4. Pick two vertices at random, onc¢ on each of the two subtrees.

B5. Translate the smaller subtree such that the vertices chosen in step B4 are near-
est neighbours on the lattice, in any of 2d possible orientations. Look for
intersection between the (rotated and translated) smaller subtree and the bigger
subtree. If there is an intersection, then we have a failed attempt, so go back
to step B1 for the next attempt. Otherwise, we have a ncw tree, consisting of
the bigger subtree, the (totated and translated) smatller subtree, and a new edge
joining the two vertices chosen in step B4. Update the old tree and go to step
B1 for the next attempt.

The elementary transitions in algorithm A arc just special cases of the possible
elementary transitions which can occur in algorithm B; if the smaller subtree (branch)
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in algorithm B is a single vertex, then the attempted transition is identical to that of
algorithm A.

Algorithms A and B are Monte Cario algorithims (Metropolis ef al 1953) sim-
ulating trees in the canonical ensemble (with a fixed number, n, of vertices). Let
T, be the set of all (unrooted) trees (modulo a transfation) with » vertices in the
hypercubic lattice. Let the cardinality of T, be {,. Then it is believed that

t, ~n~fA" (2.1)
where A is the growth constant for trees on the lattice, and ¢ is a critical exponent.
We _assign an equal weight to each tree in T,. Algorithms A and B have finite
state space 7, and we shall see that they each have the uniform invariant probability
measure

r, =1t,! YVweT,. (2.2)

The basic elementary transitions of each algorithm are described by a transition
probability matrix P = {p(w — v)} = {p_, } which has the following properties:

(1) For each w,r € T, there exists an m > 0 such that the m-step probability from
w 6 v, p,,(m)}, is positive. This is ergodicity of the algorithm, and we prove it
in section 2.2,

(2) Foreachtree v € T}, _ cq. TP, = 7,. This will be proven for algorithms A
and B in section 2.2, Therefore, it follows that 7, is the unique limit distribution
of the Markov chain with state space T, and transition probability matrix P
(Kemeny and Snell 1976).

Let the observed states of this Markov chain be represented by X,;. The states
X; and X, are in general correlated, so that the calculation of error bars for the
mean of a real-valued function A(w), w € 7T, is a complicated procedure. If we start
the Markov chain in equilibrium, then {A;} = {A(X;)} is a stationary stochastic
process with mean

(4) = Y =, Aw) (2.3)

weT,
and unnormalized autocorrelation function
Caals) = (A4, A0 — (A)% (2.4)
The normalized autocorrelation function is defined by

CAA(‘S) 2.5
Cral0)’ *)

Once the Markov process is in cquilibrium, then the integrated autocorrelation time is
given by

Paals) =

- =% S paa(t): (2.6)

t=—o0
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The integrated autocorielation time controls the statistical error in the Monte Carlo
measurements of the mean (A,) of the observable A. The variance in the sample
mean A, over N observations, is asymptotically given by

o3(A) ~ (270 A))Cx4(0). @7)

In other words, the effective number of independent observations is N/(27y,)
(Madras and Sokal 1988).

The relaxation time of the slowest mode in the system is called the exponential
autocorrelation time T, (Madras and Sokal 1988). If the normalised autocorrelation
function decays exponentially, then r, is the rate of that decay associated with the
slowest mode in the system. If we estimate the exponential autocorrelation time
associated with a variable z, then we indicate it by r, ,. Typically, = (the integrated
autocorrelation time) is of the same order as 7, (or better).

2.2. Ergodicity and reversibility

It is now necessary to prove that algorithms A and B are ergodic and reversible
(satisfy detailed balance).

2.2.1. Ergodicity. Both algorithms A and B are ergodic because any tree of (n — 1)
cdges can be transformed into a straight line in (n — 1) steps. In detail: let w be a
tree with n vertices (and consequently (n — 1) edges). Let {e;} be the set of unit
vectors in Z¢. We find the top vertex ¢ of w by a lexicographic ordering of all the
vertices. Since « is a tree, it has at least two leaves. There is therefore at least one
leaf which has an endpoint of degree 1 which is not . Move this leaf and append it
to t in the e, direction. Then there is a new top vertex: (14 e,}. Repeat this process,
delete a leaf and append it to the top vertex. Every edge that we remove must have
had endpoints with first components less than or equal to the first component of ¢ {by
the definition of t); and is moved to a location with endpoints ({4 (i —1)e,, 1+ ie,)
(if it is the ith leaf to be moved). After (n — 1) iterations the vertices in the new
tree will be {t,t 4+ e,,t + 2¢;,...,1 + (n — 1)e,}, and the associated edges will
be (t+ (¢~ 1)e,,t+ fe;), where i € {1,2,...,n — 1}. Algorithms A and B are
therefore ergodic.

2.2.2. Reversibility of algorithm A. Let w be a tree, and let o’ be a tree that can be
obtained from w by moving a single leaf. The probability of obtaining w’ is given by
the probability of (1) picking the correct leaf, (2) picking the correct site to append it
to, and (3) picking the correct orientation when we append the new Jeaf. In step Al
of algorithm A we see that the probability for picking a particular leaf is 1/(n - 1).
The resulting tree has (n - 1) sites left, so the probability for picking a particular
site is 1 /(n — 1), and there are 2d possible ways of attempting to append the new
leaf. Therefore

1

T 2d(n—1)? (2:8)

p{w — )

where p(w — w') is the probability of obtaining «’ from w by moving a single leaf.
The reverse process is obviously the same: therefore

plw —w') = p(w' —w) (2.9)
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(a} (b) (c)

Figure 1. If an algorithm for trees picks leaves and places them back by selecting a site
al random from the perimeter of the tree, then it is not reversible. The marked leaf
in (@) is picked with probability 1/3. It is put back in (b) with probability 1 /8. If we
reveise ihe process, ihen we find 1/4 to move from (¢ to (&), and 1 /8 to move from

(&) to (@)

whenever p(w ~ ') > 0. Also, equation (2.9) clearly holds if p(w — w') = 0, and
so algorithm A is reversible.

We note that the algorithm for site trees of Duarte (1986), and also Duarte and
Cadilhe (1989), is not reversible. Consider for example the tree in figure 1(a). In their
algorithm a choice is made from the leaves, and the leaf is deleted. With probability
1/3 we obtain the tree in figure 1(b). The algorithm then selects a site from the
perimeter set of the tree, and attempts to append the leaf there. In figure 1(b}), there
are eight perimeter sites, so0 we obtain figure I(c) with probability 1 /8 from 1(b),
and with probability 1 /24 from 1(a). A similar argument shows that the probability
of obtaining 1{a) from 1(c) is 1 /32. The algorithm is therefore not reversible.
Reversibility of Algorithm B. Let w be a tree, and let o’ be a tree that can be obtained
from « by moving a single branch of w. The probability of obtaining w’ is given by
the probability of (1) picking the correct branch, {2) choosing the correct element of
the octahedral group to rotate the chosen branch, (3) picking the correct vertices on
¢ach branch to reconnect the tree, and (4) putting the chosen vertices in the correct
orientation to each other. We choose a branch by deleting an edge; this can be done
in {n — 1) ways, if the tree has n vertices. Suppose that the octahedral group has
o, clements, that the number of vertices in the branch is k, and that we perform the
algorithm in d dimensions. Then

1
2do k(n— k) (n—1)

plw —w') = (2.10)

The procedure can easily be seen to have the same probability if we start from o’
and construct w. It is therefore in detailed balance. (Note that every g € O, has an
inverse, so we can always perform the attempted transition in reverse.)

2.3, Properties of lattice trees

In this scction we consider the properties of lattice trees (for an example of a
lattice tree, sce figurc 2) that can be mecasured by a canonical simulation of lattice
trees in the cubic lattice. Let z,(v), i = 1,2,....d, be the ith cartesian coordinate
of the vertex v. Let w be a lattice tree, and let w, be the ith vertex of the tree. Then
we have the foliowing definitions.
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Figure 2. A lattice tree with 5000 vertices.

2.3.1. Mean square radius of gyration. Let r2(w) be the square radius of gyration of
w. That is

n 2

m2(,_.\_lTn"[Td‘[m R T N1 REE

Tridl) — né;lé_;\~bjkwi)_;é_;"‘jlwk}} J Le.11)
It is widely believed that there exists a critical exponent v such that

(rZ) ~ n* (2.12)

where the mean is taken over all conformations of trees with n vertices. {r%)
measures a length scale for trees.

2.3.2. Mean span. Let d be the spatial dimension. Then we define s,(w), the mean
span of the tree w, by

. od
sae) = 5 X [, = o)D) 213)

If we assume that there is only one length scale for lattice trees, then we expect from
equation (2.12) that

(s,) ~n" (2.14)
where the mean is taken over all the possible conformations of trees.

2.3.3. Longest path in the tree. Let p_ (w) be the length of the longest self-avoiding
walk in the tree w. We are immediately intcrested in the behaviour of p_(w) with
n. We can easily find p,(w) in the following way. Let ¢ be any vertex in w, Let
ab be a longest path in the tree starting from a, and let bz be a longest path in
the tree starting {from b. Then bz is a longest path in the tree (Dewdney 1985a; for
an elegant proof, see Dewdney 1985b). The longest path in the trec is an intuitive

‘measure’ of how far the tree differs from a self-avoiding walk, that is, to what extent
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is it entropically favourable to add appendages onto the walk rather than making it
longer. We define the exponent o by

(pa) ~ nf (2.15)

where the mean is taken over all the possible conformations of trees. If p = 1, then
a lattice tree is essentially a decorated self-avoiding walk. Since self-avoiding walks
and trees do not belong to the same universality class, we expect that o < 1. It is
also useful to note that p, is at least as long as the span, so that v < p.

2.3.4. Mean branch size, Let b, (w) be the mean size of a branch in w obtained by
deleting an edge in w with uniform probability. We define the exponent € by

b yr~n’ (2.16)
where the average of b, is taken over all the conformations of trees. We can guess
the value of ¢ in the following way, Suppose that the structure of the tree is that
of a longest path which contains ©(n”) edges, and with @(n”) smaller branches
which sprout from the longest path. (Here ®(n®) means at least cn® and at most
Cn?® for somé¢ C 2 ¢ > 0). The total number of edges in these smaller branches is
n —©(nr), so each branch has an average size of ©(n!7?). If we pick an edge from
the longest path, then we separate the tree into two pieces which cach have ©(n)
edges, since each piece of the longest path will have ©(n*) edges and of the same
order of side branches. If we pick an edge not on the longest path, then the size of

the branch picked is G(n?), where o satisfies 0 € o < 1 — p. We therefore expect
that

_e(m)eny+ O(n7).0(n —n”)
n

(b,) ~ @(n”) + O(n%). (2.17)
Hence we conclude that € = max{p,c}, where ¢ € (1 -~ p). Next, to see that
€ = p, we argue heuristically as follows. Take a branch of the tree of size ©(n'!~?)
and delete an edge at random; the size of the component of the branch that does
not contain the edge which touches the longest path is ©({n°), by definition of o.
Therefore, in a tree of n vertices with a single randomly labelled leaf, if we delete
an edge and take the component which does not contain the labelled leaf, then the
size of this component is ©(n?/{1-#)), The probability that the labelied edge is
in the smaller branch is (b,)/n = ©(n*/n), by definition of € so the expected
size of the branch which does not contain the labelled leaf is @(n/(1-7)) = (n —
B(n*))B(nt/n) + B(n)(1 — O(nt/n)} = BO(n*). Therefore, o = (1 - p) < e
Combining this with ¢ = max{p, ¢}, we conclude that

p=c¢. (2.18)

2.3.5. Acceptance fraction of algorithms A and B. A pattern theorem for trees (Madras
1989) allows us to estimate the behaviour of the acceptance fraction af the algorithms.
It implies that any fixed arrangement of edges in a tree will occur ©(n) times on
average in a tree of sufficient size. If an arrangement of edges are selected which
allows an additional edge to be added to it, then it appears that there are ©(n)
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locations in the tree where a proposed leaf may be added on average. Also, there
are ©(n) leaves. Therefore, the acceptance fraction of algorithm A, f72, satisfies
liminf, ., f# > 0, and we in fact expect it to have a limit:
lim fA=C (2.19)
n—o0
where the constant C is dependent on the spatial dimension. The same applies to
algorithm B, since f2 > fA

2.3.6. The degrees of the vertices in the tree. The pattern theorem for trees also predicts
that the frequency of vertices of degree ¢, ¢ = 1,2,...,2d, in a tre¢ is O(n). If
the number of vertices of degree < in a given tree is given by ¢,, then we expect that

f.
lim (—') = ¢ for 1€:<2d (2.20)

n—~03 71

where (; is a constant dependent on d, and where the tree has n vertices.

3. Implementation of the algorithms

The implementation of the algorithms deserves some attention, since big savings in
computer time can be obtained by carefully designing the code. The algorithms were
both programmed in FORTRAN77. We first describe the programming of algorithm B,
since algorithm A can be viewed as a special version of algorithm B, where we only
allow the moving of leaves.

Suppose that we are considering a tree in d dimensions with n vertices. The
following permanent data structures were set up:

(A) A list of vertices of the tree in an n x 3d array V. The first d addresses in
the ith row of V' contain the coordinates of the ith vertex of the tree. The
remaining 24 addresses (V(i,d + 1),V (i,d + 2),...,V(i,3d)) are pointers
which point to the labels (i.e. row numbers) of vertices which are connected to
the ith vertex in the tree. (Some of these addresses will be empty if the degree
of the ith vertex is less than 2d.)

{B) A hash-table HTAB {(an m x d array) (Knuth 1973). Here m 1 a fixed
number (m = 10n is sufficient). The vertices of the tree are hashed into the
table using a hash-function (Madras and Sckal 1988} and linear probing. We
need to perform three operations on fTAB. If v is any vertex, then these
operations are
(a) ve HTAB?

(b) Add vto HTAB.

(c) Remove v from HTAB.

It is easy to write fast subroutines to perform these tasks on HT'A B (see Knuth
(1973) for details). The advantage of using the hash-table is that we can use
operation (a) to perform an efficient check that a proposed new configuration
is self-avoiding (and therefore a tree).

(Cy Alist of labels SMALL (an n /2 x 2 array). We store the labels of the branch
that we attempt to move in one of the two columns of SMALL.

(D) A list A (an n-element vectar). A is initialized to contain a zero in each
address. We shall use A to identify which vertices are not in the branch that
we attempt 10 move.
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We can now implement algorithm B in the following way:

(B1-B2) Choose an edge at random from the tree. We do this by using rejection:

(B3)

(B4)

(BS)

We pick i € {1,2,...,n} and j € {d+1,d+2,...,3d} at random. If
V'(i,j) is empty, then we try again; otherwise, we pick the edge whose
endpoints are given by ¢ and V'(i,7). On average, the number of tries
needed to find an edge is d. We delete this edge, separating the tree into
two subtrees or branches.

Perform a depth-first or breadth-first search (Wilson and Watkins 1990)
on the two subtrees simultaneously, starting at the endpoints of the chosen
edge, to find the branch which we will attempt to move. This amounts
to searching alternatingly on the two subtrees, reading the labels of the
vertices encountered into SM ALL(.,1), choosing : = 1 or 2 for each of
the two subtrees. As soon as one of the two subtrees has been completely
searched, we know that it must be the smaller subtree (branch), and we
pick ¢ to be 1 or 2, whichever corresponds to the branch. The labels of
the vertices in the branch are then written in the ith column of SMALL,
in order as we detected them by the search. Once we have determined the
labels of the vertices of the branch, we update the list A by puttinga 1 in
each address which is a label of the vertices on the branch. This is a very
convenient arrangement. By simply querying A, we can detect whether a
vertex is in the branch, or in the rest of the tree. It is also easy to reset
A to all contain all zeros: The addresses of A which contains non-zero
elements are the labels of the vertices on the branch, which are listed in
SM ALL. Note that the amount of ‘work’ performed in this step is of the
order the size of the smaller subtree,

Pick a vertex r on the branch, and another vertex y on the rest of the tree.
The vertex x can be picked uniformly from the list in SM AL L. We pick
the vertex y by rejection frem V, querying the list A to determine whether
the vertex is in the branch. Since the number of vertices in the branch is
at most n /2, the average number of attempts is at most 2.

The branch is now rotated by applying a4 randomly chosen element of the
octahedral group to it. We then translate the rotated branch so that the
vertex « on it will be a nearest neighbour of the vertex y on the larger
subtree. This is one of 2d possiblc positions, chosen at random. The
proposed tree is now formed by adding the edge between the vertices =
and y. The last step in the algorithm is to check for self-intersections in
the proposed tree. This is easily done by querying the hash-table HTAB
and the list A. A particularly effective way of performing the check is to
start at the vertices & and y, alternatingly performing a breadth-first search
on the two subtrecs. Since the two subtrces are in closest contact at = and
y, it seems likely that an intersection will occur near these vertices, if it
occurs at all. We perform step BS efficiently by rotating the vertices on the
smaller trec one by one, testing for intersections each time we calculate the
new coordinates of another vertex.

If the conformation is not self-avoiding, then we reject it, we reset the list A
to its null-values and start at step B1. Otherwise we accept the new tree, update
the vertices in V' and update the hash-table by removing the old vertices from it and
adding the new vertices to it. Lastly, we reset the list A to its null-values-we take data.
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The size of an average branch on the tree is expected to grow as n¢ (recall
(2.16)). The scarches (depth-first and breadth-first) which we perform to identify
the branches take therefore O(n<) operations. Updating the old tree in case of
a successful attempt, and updating the hash-table and other lists also takes O(n®)
operations. We therefore expect the average amount of work per iteration in the case
of algorithm B to be O(n*).

The implementation of algorithm A is simpler than that of algorithm B. We retain
the data stiuctures V' and i T A B, but we note now that we do not need SMALL
and A, both of which are necessary to search and store branches in algorithm B. An
implementation of algorithm A would be:

{Al, AZ) Choose an edge from the tree, in exactly the same manner as was done in
algorithm B. If the edge has one vertex which is of degree one, then delete
it, else we reject the attempt, and try again to select an edge.

(A3, A4) Pick a vertex on the tree, and one of its neighbouring sites with uniform
probability, and attempt to add an edge between the two sites. If the
neighbouring site is already occupied, then we reject the attempt, and start
again at step Al. Otherwise we add the edge, and update the tree and the
hash-table. We take data and start again from step Al.

The amount of work per attempted iteration of algorithm A is evidently O(1).
At every point in the algorithm we only deal with at most two vertices, and there is
no explicit n-dependence in any of the operations performed.

The number n?r2{w) of a tree w with n vertices, where 2 is the square radius
of gyration, can be calculated using only integer operations. We also note that after
every successful attempted transition we can ‘update’ n?r2 by simply subtracting
the old vertices and adding the new. The span of a tree, s, the longest path p
and the degrees of the vertices of the tree take O(n) operations to calculate. In
view of these facts, it seems best to sample these properties of the tree every n
attempted transitions, for it is not sensible to spend O(n) operations calculating the
span of a tree while less than n iterations seperates it from the last configuration
that was sampled: We may end up spending more time calculating the span and
other properties than updating the tree into new regions of configuration space. The

. f ; H 2,.2 Fr
acceptance fraction, the mean branch size, and n®r? can be updated after every

attempted iteration; we therefore calculated these numbers as block-averages over
blocks of data of length n.

The data were written as a stream of numbers during the runs and stored for
analysis. We used a time series analysis to find the autocorrelation times for each of
the variables (Madras and Sokal 1988). The number of iterations performed for each
run was typically 10000=, which gives us 10000 data points, and error bars of about
one per cent on the calculated variables. The program proved to be extraordinarily
efficient; for example, the results in four dimensions were obtained by a total of 11.5
hours of computer time on a DECS000 workstation (with RISC-technology). At each
value of n the initial tree was chosen to be a straight sequence of edges with no
branches. Algorithm B was applied to this initial tree until all initial bias disappeared
from the data. This relaxation was very fast for small n, but took up to 5 x 10°
itcrations for longer trees.
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4. Numerical results

4.1. Comparing algorithms A and B

It is not immediately obvious that algorithm B will perform better than algorithm
A in a numerical test. This is because algorithm A can perform O(m) attempted
iterations for every one attempted move of a branch of m vertices by algorithm B.

In this section we shall compare these algorithms by comparing the autocorre-
lation times in units of the amount of work performed by the CPU. A convenient
measure of ‘work’ is the CPU time used by the algorithms in generating the trees, ex-
cluding the time required for taking any measurements of the properties of the trees.
By comparing the CPU time per iteration of algorithm A and algorithm B, we can
find a ratio ~5 which is the average number of attempted transitions in algorithm A
per one attempted transition in B (for the same amount of cPU time). If we calculate
the autocorrelation times of aigorithm B in units of » attempted iterations, then we
should express it in units of rin attempted iterations for algorithm A. The algorithms
are then compared by taking the ratio of the autocorrelation time of algorithm A (in
units of rBn attempted iterations) to that of algorithm B (in units of n attempted
iterations). Since the number of ‘independent observations’ in the data stream of the
algorithm is inversely proportional to =, we are in fact calculating the ratio of the
number of independent observations obtained by algorithm B for every independent
observation by algorithm A (for the same amount of CPU time).

Table 1(g). A comparison between the autocorrelation limes with respect to the mean
square radius of gyration of algorithms A and B in two and three dimensions. The
autocorrelation times are in units of rﬁn and n attempted iterations for algorithms A
and B respectively.

n T ™m(A) T (B) M@BA)
Two dimensions 25 6.2 434 1.51 0.60
50 7.4 104 1.92 0.43
100 9.0 34 2.9 0.29
200 1.7 76 38 0.23
400 15.6 124 §7 0.21
Three dimensions 25 7.0 27 0.93 0.59
50 8.2 7.1 1.00 0.38
100 9.2 16 1.03 0.25
200 10.6 a5 16 0.21

In table 1{a) we compare the algorithms in two and three dimensions with respect
to the mean square radius of gyration. The results for the other global properties
(mean span, mean longest path, and mean branch size) are very similar. In the
first column we list the number of vertices of the tree under consideration. The
second column contains 8, the number of attempted iterations of algorithm A for
every attempted iteration in algorithm B. The third and fourth columns contain the
autocorrelation times of algorithms A and B respectively, and in the last column we
list M(B,A), the square root of the ratio of the autocorrelation times of algorithm B
to that of algorithm A. We can expect that the confidence intervals in algorithm B
will be smaller than that of A by this factor. We seec that algorithm B outperforms
algorithm A significantly. In two dimensions, for n = 400, we can expect error bars
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Table 1(b). The autocorrelation times of algorithm B, measured from the mean square
radius of gyration and in units of n attempted iterations. Error bars are standard
deviations.

n T2 (20) 72 (3D) T,z (40) 72 (8D)  ra (9D)I

25 LS09(77)  0.927(40) 0.794(30) 0.728(31) 0.702(27)
50 1.92¢12)  1.003(43) 0.823(31) 0.685(2) 0.682(26)
100 290(30)  1.033(49) 0.750(24) 0.642(21)  0.676(26)
200 3.80(50) 157(14)  0.840(36) 0.621(X)  0.638(24)
300 436(37) 1.230(68) 0.783(30) 0.615(24)  0.610(20)
400 4T9(42)  1271(60) 0.776(30) 0.622(30)  D.58%(19)
600  6.00(60)  1.249(59) 0.729(28) 0.612(23) 0.585(19)
800  7.08(73)  1313(67) 0.752(29) 0.585(19) 0.611(23)
1200  825(93)  1.48(11)  0.708(27) 0.566(18) 0.590(23)
1600 11.5(20)  1.452(69) 0.732(28) 0.557(17) 0.570(22)

which are about five times smaller had we run algorithm A (for the same amount of
work).

It is striking how the superiority of algorithm B improves with n, the number of
vertices in the tree. A plot of the autocorrelation time against n on a log-log scale
shows linear behaviour; we therefore expect that = will grow as a power of n. A
simple weighted least squares fit to the data in the table (where we also take into
account data for algorithm B for trees consisting of up to 1600 vertices, as listed in
table 1(b) implies that

T,'.Q(A) —~ nl.3i0.2 (41)
Trz(B) ~ n0.45:l:0.04 (42)

in two dimensions, and in three dimensions,

T’,.:(A) ~ n1.3:l:0.1 (43)
Trn( B) _~ nD.'.?-_':D.OE_ (44)

where the statistical errors are 95% confidence intervals. Here we have measured
the aniocorrelation times in units of n attempted iterations for algorithm B, and in
rBn iterations for algorithm A. (Note that since the mean CPU time per attempted
iteration in algorithm B is believed to go as n¢, if we want to measure autocorrelation
times in CPU seconds, then we must add (1 4 ¢) to all of the exponents above).
Comparing cquations (4.2)—-(4.4) suggests that algorithm B performs better in
three dimensions than in two, with the autocorrelation times growing slower with the
number of vertices in the trees in three dimensions. In contrast to this, algorithm A
has autocorrelation times which depend similarly upon » in two and three dimensions.
In higher dimensions, an examination of table 1(b) suggests that the data points
are only weakly correlated, if at all. In retrospect, the algorithm is even better than
we suspected, Assume that the path between two given vertices on the tree has,
on average, @(n°) edges. The correlation between these points are destroyed in
the algorithm if we pick an edge on the path between the vertices and perform a
successful transition. In the mean ficld approximation, the probability of this event is
roughly ©(n*~!). After m iterations, the correlation between these vertices are

S~ (1= B(n71))™, (4.5)
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The exponential autocorrelation time (of a global quantity X, such as the path length
between the vertices, or the Euclidean distance between the vertices) can be esimated
from this expression (for a similar analysis involving the pivot algorithm and the self-
avoiding walk, see Madras and Sokal (1988)). We find

Tex(B) = ©(n'"¢} iterations. (4.6)

We calculate the mean field value of ¢ in appendix A to be 1/2. Therefore, the best
possible behaviour for the algorithm is when

Te x(B) = ©(n'/?) iterations. (4.7

(If we express this in units of n iterations, as we do in equations (4.1)-(4.4), then
we have 7, x(B) ~ n~%5 for the best possible behaviour of algorithm B.) Thus, the
data in table 1(b) tell us that r is between ©(/n) and ©(n) iterations in four and
more dimensions. In general, the autocorrelation times will depend on other factors,
such as the acceptance fraction of moves involving large subtrees. We discuss this in
the next section.

Table 2(z). The acceptance [raction of algorithm A, f,‘f‘, in two and three dimensions.
Error bars are standard deviations,

n o f} (D) 2 6o

25 012500 (25) 020790 (26)

50 010685 (22) 0.18867 (22)
100 009860 (20 0.17891 (2

200 009340 (20)  0.17360 (16)
400 009180 (20) —

4.2. The acceptance fraction of proposed moves

As explained in section 2.3, we expect that the acceptance fraction of algorithm A
will converge to a constant value, as = tends to infinity. The acceptance fractions of
algorithm A in two and three dimensions are listed in table 2(a). We obtained the
data over 40000nr§ observations, where the »B are listed in table 1(a). To obtain
an estimate of the limit C in equation (2.19), we assume that

fA=C+An-t (4.8)

where C', v and 4 are parameters which we should obtain by a weighted least squares
fit to the data in table 2(q). This form assumes possible non-analytic terms in f2,
and it seeks to estimate the largest of them. From a three-parameter weighted least
squares fit to the data we find that

i (4.9)

. A 0.0897 £ 0.0007 ifd=2
lim f' = .
0.168 £ 0.002 if d = 3.
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Table 2(b). The acceptance fraction of algorithm B, f,.‘?, in two, three, four, eight and
nine dimensions. Efror bars are standard deviations,

n 12 (o) fB () 8 (o) I3 (ep) f2 ()

25 0.22596 (92) 0.4301 (11) 0.5733 (11) 080441 (81) 0.82925 (76)

50 0.17550 (70) 0.36767 (76) 0.51964 (74) 0.78764 (60) 0.81453 (56)
100 0.14950 (50) 0.32980 (52) 0.48130 (53) 0.77509 (44) 0.80570 (40)
200 0.13650 (30) 0.30619 £39) 045634 (30) 076852 (31 0.80042 (29)
300 0.13182 (29) 0.29736 (32) 0.44613 (33) 0.76545 (26) 0.79876 (24)
400 0.12912 (25) 029342 (28) 0.44063 (28) 0.76356 (22) 0.79697 (20)
600 0.12755 (20) 0.28848 (25) 0.43371 (23) 0.76148 (18) 0.79585 (17)
800 0.12651 (17) 0.28622 (21) 0.43015 (20) 0.76037 (16) 0.79516 (15)
1200 0.12505 (15) 0.28325 (18) 0.42609 (15) 0.75900 (13) 0.79428 (12)
1600 0.12466 (14) 0.28236 (16) 0.423% (15) 0.75843 (11) 0.793951 (97)

The error bars are 95% confidence levels. In both cases, the value of § was close to
1(1.024£0.05 and 0.94 + 0.05 for d = 2 and d = 3 respectively).

We expect that algorithm B will have a higher acceptance fraction than algo-
rithm A, since we will have all the succesful transitions which occur in algorithm A,
as well as succesful transitions involving branches of different sizes. The acceptance
fractions of algorithm B are listed in table 2(b) for two, three, four, eight and nine

ALLIVIEY UIE alpiisitl WAt LD EUN LY Sy ARy Wi

dimensions. Assuming equation (4.8) again, we find that

0.1229 £ 0.0003 fd=2

0. . ! if d =3
Yim f,? - 2761 £ 0.0005 l (4.10)
n—00 0.4114 % 0.0004 if d =4

0.7920+4 0.0003 ifd=0.

(We discuss the case d = 8 below). We find that 6 is close to 1 only in two
dimensions (6 = 0.98 +0.04). In three dimensions we find that § = 0.79 + 0.02, in
four dimensions § = 0.62 +0.02 and in nine dimensions § = 0.71 + 0.03. The rate
of approach to the limit is considerably slower than n~! in these three cases.

We see in tables 2(a) and 2(b) that the confidence intervals on our data points
are very small (a few tenths of a per cent at most). We expect that the presence of
a term that goes to zero slower than a power of n will probably spell difficulty for
our fitting algorithm. In fact, in cight dimensions Newton’s method fails to converge
for the data in table 2(b). This suggests that there is a term which converges slower
than a power of n. One way of dealing with this is to assumec that

B = C 4 v|logn|t. (4.11)
A weighted least squares analysis gives

lim fB =0.7484 + 0.0007 if d=8. (4.12)
1 02

We obtain § = 2.12 4 0.07. (To check assumption (4.11) we plotted log( f2 — C)
against log |log n| in cight dimensions using € from equation (4.10). The result was
a straight line. The analogous plot in nine dimensions was strongly curved.)

The acceptance fraction of algorithm B increases significantly with the dimension,
which suggests that the algorithm is morc eflicicnt in higher dimensions. To examine
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Figure 3. The size distribution of proposed branches in the algorithm. The data is from
trees of size 800.

this suggestion more precisely, we consider the mean size of the proposed branches
and the mean size of the accepted branches in different dimensions for fixed n (the
number of vertices in the tree). In figure 3 we plot the number of proposed branches
of size m against m on a lincar-logarithmic scale. The number of iterations was
8000000 and »n was 800. We see that the biggest branches are proposed in two
dimensions, and that the incidence of big proposed branches declines as we increase
the number of dimensions. In fact the mean size of a proposed branch declines from
51.4 in two dimensions, through 35.7 in three dimensions to 29.9 in four dimensions,
23.6 in eight dimensions and 23.2 in nine dimensions. While these numbers at first
sight seem to indicate that algorithm B will be more successful in lower dimensions, it
is really the acceptance fraction of the larger branches which will make the difference.
In figure 4 we plot the acceptance fraction of branches of size m, fB(m), against m
for algorithm B. We see that the acceptance fraction for a given value of m increases
rapidly with dimension, reflecting the behaviour of the acceptance fraction integrated
over m. Combining the above data, we calculated the mean size of the accepted
branches: This is only 2.45 vertices in two dimensions, and increases through 4.85 in
three dimensions to 8.61 in four dimensions, 19.61 in eight dimensions and 20.26
in nine dimensions (for eight and nine dimensions these are 83% and 87% of the
proposed branch sizes respectively). Thus, even though the mean size of the proposed
branches decreases with dimension, we find that the mean size of branches which are
involved in successful transitions increases with the number of dimensions. We expect
therefore that algorithm B will perform more effectively in higher dimensions. These

effects can also be seen in the scaling of the autocorrclation time with n, which we
discussed in section 4.1.

4.3. The mean square radius of gyration and the mean span

The mean square radius of gyration, (r?), and the mean span, (s), of trees measure
a universal length scale defined by the exponent v on the lattice. To estimate v,
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Figore 4. The acceptance fraction of branches of size m. The higher the number of
dimensions, the higher the acceptance fraction. More interesting, the curves do not go
to zero with increasing branch size, but reach a plateau. It is almost as likely for a
branch of size 400 to be accepted as a branch of size 100, The data is from trees of
size 800.

we begin with the scaling relation {r?) ~ An2?*. We can write this asymptotic
relation as an equality with (infinitely many) correction-to-scaling terms: {r%} =
An?(14bn~2 + --.). Our job is to fit a curve (r r?) = f(n) to the data. There are

two obvious choices for the form of this curve: either we should eliminate all of the
correction-to-scaling terms, giving the two-parameter family of curves

(1) = An® (413)

or else we should eliminate all but the dominant correction, giving the four-parameter
family

{r¥) = An®(1 4+ bn™2), (4.14)

The form (4.13) is appropriate if the values of n under consideration are all large
enough so that the actual corrections to scaling are smaller than the statistical errors
in the data; thus, if a log-log plot of the data is clearly linear, then we should be

satisfied that we are in the asymptotic regime and work with the form (4.13). (Of

course, one should also check fits of the form (4.14) as a standard procedure, even
if the plot appears very straight to the eye.) On the other hand, if this plot shows
strong curvature, then our first choice should be the form (4.14). Of course, there
is no guarantee that the best curve of the form (4.14) will reflect the true value of
A, since we do not know the size of the omitted correction terms (when n is small,
the omitted terms are large, so it is hard to see A from data corresponding to small
values of »; while when n is large and the omitted terms are small, then the included
term Bn~2 is also small). It is very likely that one ends up estimating some effective
exponent A4 which has no intrinsic physical meaning. Thus we take the cautious
view that unless the data speaks very strongly to the contrary, the parameter A in
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(4.14) is no more than an aid to the extrapolation of a finite amount of data into the
n — oo asymptotic regime. In the data presented in this paper, we find no strong
evidence for any particular values of A; instead, the best that we feel justified in
doing is testing the consistency of other researchers’ values of A with our data.

In practice, one would like to perform linear least squares regressions. This is
accomplished by taking the logarithms of (4.13) and (4.14). The scaling assumptions
are then

log(r?} = a + 2vlogn . (4.15)
log(r?} = a + bn~% + 2vlogn. (4.16)

If we fix A in (4.16), then v is obtained by a linear regression. The data points
from the smallest trees will suffer most from corrections, so we attempt to minimize
their influence by throwing away data points {rom the smaller irees. We estimate the
parameter 1 by performing weighted least squares regressions for the model (4.15),
in which the weights are determined by the estimated error bars. The best choice
of n,;, (the smallest value of n that we do not throw away) is determined by the
associated x? statistic: the (weighted) sum of the squares of the distances of the data
points from the fitted curve (see e.g. Silvey 1975). When the model is correct, this
statistic has a x2 distribution (here k, the number of degrees of freedom, equals the
number of data points used minus the number of model parameters that we are trying
to estimate). Since our scaling assumptions are imperfect, a typical regression will
provide best estimates of our parameters in a biased fashion: there is a systematic
error present. We can attempt to estimate this error, where possible, by comparing
results from two different scaling assumptions. In most cases we can compare the
results from a two-parameter fit (4.15) to a three-parameter fit (4.16).

Table 3. The mean span of trees. Error bars are standard deviations.

n sn (2D) sn (3D) 2y, (4D) sn (8D) " 8n (D)

25 6.842 (32) 42107 (59) 32197 (44) 1.9026 (21) 17510 (19)

50 11.147 22) 6.4020 (88) 4.7449 (58) 2.7970 (29) 2.5883 (25)
100 17.915 (42) 9.471 (13) 6.7354 (75) 3.8502 (35) 3.5669 (32)
200 28.188 (73) 13,773 (20) 9.3560 (99) 5.1000 (44) 4.7410 (39)
300 36.79 (11 17.039 (23) 11.264 (12) 5.9578 (49) 5.5208 (43)
400 44.67 (14) 19.821 (28) 12.835 (13) 6.6149 (52) 6.1331 (47T)
600 58.60 (21) 24.440 (35) 15.378 (16) 7.6392 (61) 70699 (53)
800 69.70 (26) 28.358 (39) 17.444 (17) 8.4546 (64) 7.7848 (58)
1200 90148 (36) 34.929 (51) 20,925 (20) 9.6698 (71 8.9017 (64)
1600 109.82 {55} 40.386 (ST 23.657 (22) 106155 (17) 9.7781 (69)

We examine the mean square radius of gyration (with scaling assumptions (4.15)
and (4.16)) and the mean span (with scaling assumptions analogous to (4.15) and
(4.16)) for each of the dimensions considered in our simulations. We list our results
in tables 3 and 4. In what follows we give all statistical error bars as 95% confidence
intervals.
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Table 4. The mean square radius of gyration of trees. Error bars are standard deviations.

n i (D) 3 (3D) r7 (4D) 4 (3D) 5 ()
25 8.181 (35) 4.673 (14) 3.7028 (86) 2.8717 (46) 2.8108 (42)
50 19.43 (10) 9.054 (28) 6.460 (16) 45208 (69) 4.3829 (65)
100 46.89 (29) 17.823 (55) 11.293 (26) 6.8984 (96) 6.6559 (91)
200 11240 (80) 34.75 (12) 19.686 (45) 10.356 (14) 9.948 (13)
300 1863 (15) 51.66 (19) 27.263 (60) 13.053 (16) 12.479 (15)
400 2712 (22) 68.73 (26) 34.312 (76) 15.356 (18) 14,597 (16)
600 4747 (44) 102.51 (37) 47.72 (10) 19.269 (21) 18.238 (19)
800 654.0 (66) 136.25 (51) 60.31 (13) 22635 (23) 21.298 (21)
1200 10930 (13) 203.97 (83) 84.64 (17) 28.211 (26) 26.503 (24)
1600 16220 (22) 270.6 (11) 107.27 (22) 33.008 (29) 30.862 (26)

4.3.1, The mean square radius of gyration.

Two dimensions. A log-log plot of the mean square radius of gyration against n
(figure 5) shows no evidence of curvature, but a two-parameter fit to the data pives a
very poor x? statistic { 2 minimum of 28.5 at n_, = 25 with 8 degrees of freedom).
A close examination of figure S indicates that the point at n = 600 seems to be off
the regression line. If we examine our data without this point, then x% = 12.53,
(< 95%). We conclude that the data point at n = 600 is an outlier and we estimate
that v = 0.6326 + 0.0019.
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Figure 5. The mean square radius of gyration of trees plotted against n on logarithmic
axes.

If a three-parameter analysis of the data is performed, where we assume equation
(4.16), then we are unablc to minimize the x* statistic by tuning A, Instead, we find
that v? decreases slowly as we take A to zero. It seems therefore plausible that
there is a very weak correction present. To assess the effect of this correction on our
results, we can fix A at some value, and find a best estimate for v (it would not
be unreasonable to choose A = 0.5: while this is not the best value, it nevertheless
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indicates the size of a systematic crror in the two parameter fit by showing the
dependence of v on variations of A; if there are no corrections, then the amplitude
of the correction should be near zero, and v will be consequently independent of A).
Our regression analysis with A = 0.5 gives x2 = 4.65 (< 75%). The best estimate
is v = 0.6422 4 0.0071. We obtain our best estimate of v by taking the average of
the values produced by the two regressions. A systematic error is estimated by the
difference between the best estimate (of v) and cither of the two regressions. The
statistical error is taken as the maximum from the two regressions. We find

v, = 0.6374 £ 0.0071 £ 0,0048 417

where the format is best value + 95% confidence interval + systematic error. The
subscript 1 is to emphasize that we obtained this value from the mean square radius
of gyration.

Three dimensions. An examination of the data in figure 5 shows a slight deviation from
a straight line at the smaller n values: the curve is slightly convex. A two-parameter
fit is good when n,,,, = 200 (xZ = 1.10, < 50%). The value of the exponent is
v = 0.493910.0021. The same behaviour is observed for a three-parameter fit as in
two dimensions: the x? statistic decreases with A. We follow the same strategy here;
we assume A = 0.5 to gauge a systematic ¢rror in our analysis. A fit with n_;, = 25
is good (xi = 4.5, < 50%). The result for the exponent is v = 0.4981 % 0.0031.
We can now make our best estimate:

v, = 0.4%60 £+ 0.0031 £ 0.0021. (4.18)

Four dimensions. We find that there are in general strong corrections to scaling
here. The plot (figure 5) looks very straight to the eye, but a two-parameter fit
is not good unless we take n,;. = 400. Then x% = 5.91, < 90%. This gives
v = 0.4117 + 0.0019. A three-parameter regression behaves as in two and three
dimensions, so we took A = 0.5. For n_;, = 200 we find x3 = 2.7, < 50%. This
gives v = 0.4282 1 0.0079. Comparing these results, we find our best estimate

v, = 0.4200 £ 0.0079 + 0.0083. (4.19)

FEight dimensions. In eight dimensions we expect logarithmic corrections to scaling.
Examination of the data (figure 5), howecver, shows that it is very difficult to decide
whether we sce a power Jaw correction as opposed to a logarithmic correction. There-
fore, we analyse the data here as in lower dimensions, and we treat the corrections
to scaling as a hindrance 0 the extraction of the criticai exponenis. (It seems that
n is not large enough to exposc a logarithmic correction. The power law assumption
is only an artifact used here to aid our numerical extrapolation.) The plot (figure
5) shows a slight curvature. A two-parameter fit does not provide satisfactory results
here. A three-parameter fit with A = 0.556 and n_;, = 25 gives xZ = 6.5, < 75%.
This gives v = 0.265140.0010. To find a systematic error, we examine the sensitiv-
ity of v to the paramcter A. A convenient ad hoc approach is to change the value of
A until the value of the x? statistic has doubled, and then to vary = to find v for
these (now fixed) values of A. Our reasoning is as follows, The original x? statistic
measures how well we can choose a value of A to make the model (4.16) fit the data.
The value of A which is ‘best’ in this sense may be far from the ‘true’ value, so we
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must guard against the misspecification of A in case the resulting v is too sensitive
to it. To get an idea of the systematic error, then, we also want to examine fits when
we do not have the freedom to vary A. Our criterion chooses new values of A where
the fit is decidedly poorer, but where we can still find reasonable fits by varying n ...
In the present case, the x? statistic is doubled at A equal to 0.705 (where we find
v = 0.26824+0.0016 (n,,;, = 100)) or 0.422 (where we find v = 0.2594+0.0017
(n, = 50)). Comparing the results, we find that our best estimate is

v, = 0.2651 £ 0.0010 % 0.0057. (4.20)

The statistical error is the 95% confidence interval obtained at A = 0.484, where
we obtained the best value for v. The systematic error is the maximum difference
between the best estimate of v, and the estimates obtained from the fits where the
x? statistic was doubled. This answer is close to the expected mean field result, which
is 0.25.

Nine dimensions. The situation is similar to eight dimensions. We find with A =
0.505 that y = 0.2560 % 0.0010 (xZ = 5.1, < 50% and n_;, = 25). The
x? statistic doubles if A = 0.614 (v = 0.2608 £ 0.0008 (n_;, = 25)) and if
A = 0.398 (v = 0.2487 1+ 0.0012 (n,, = 25)). Comparing these results we find
that

n

v, = 0.2560 £ 0.0010 4 0.0073. (4.21)

4.3.2. The mean span,

Two dimensions. A two-parameter fit gives a poor x? statistic (a minimum of 18.6 at
Noin = 100 with 6 degrees of freedom). This value is over the 99.5 percentile range,
so that we do not have much confidence in this fit. A close examination of the data
shows that the point at n = 600 seems to be off the regression line in two dimensions.
If we reanalyse our data with this point deleted, then x? = 8.4, (< 90%), a dramatic
inprovement, where n_; = 100 as before. We therefore conclude that the data point
at n = 600 i5 an outlier. We estimate v = 0.6533 & 0.0028 from this regression.

As an alternative, we can instead perform a three-parameter analysis of our data.
If we ignore the data point at n = 600, then the best x? statistic is obtained at
A = 0.915 with n,;, = 25. We find x = 6.9 (< 90%). Here, we estimate
v = 0.6444 4+ 0.0019. We can now calculate a best value of v by taking the average
of the values produced by the two methods, and a systematic error by considering
the difference between this average and either of the two regressions. We take the
statistical error as the maximum from the two regressions. We find

v, = 0.6489 £ 0.0028 + 0.0045. (4.22)

The subscript s is to emphasize that this value was obtained from the mean span
data.

Three dimensions. The :* statistic in a two-parametcr linear regression decreases fast
in value with increasing n_, . For n_;, = 300 we find that x2 = 7.72 (< 90%). The
value of the exponent is v = 0.5157 £ 0.0020. A three-paramcter analysis is very
good. We find a minimum in x? at A = 0.734 (x2 = 1.26, < 50%, n_;, = 25).
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The exponent is v = 0.5034 + 0.0018. We can now calculate the best value of v
from the span data:

v, = 0.5096 =+ 0.0020 + 0.0062. (4.23)

Four dimensions. We find that there are strong corrections to scaling here. A two-
parameter fit is found to be unsuitable for any n_, in this case. The x? statistic
decreases fast with increasing n_. , but never to an acceptable value. In contrast
to this, a three-parameter fit with A = 0.78 works well (xZ = 8.7, < 90%, and
T in = 25). The result for the exponent is v = 0.4303+0.0013. T find a systematic
error, we examine the sensitivity of v to the parameter A. The x? statistic is doubled
at A = 0.66 and A = 0.91. At A = 0.66 we find that » = 0.4254 £ 0.0020

(" = 50) and at A = 0.91 we find that v = 0.4342 4+ 0.0016 (n_;,, = 50). A
comparison gives
v, = 0.4303 £ 0.0013 £ 0.0049. (4.24)

where the statistical error is the 95% confidence interval obtained

Eight dimensions. We analyse the data here as for the mean square radius of gyration
in eight dimensions. Two-parameter fits are poar, so we assume a power law correc-
tion and proceed as in four dimensions for the mean span. The best fit is obtained for
A =0.484 and n_; = 50 (xZ = 14.5, < 99%). This gives v = 0.2878 + 0.0022,
We examine the dependence of v on A now. The x? statistic doubles if we take A
to be 0.327 or 0.663. At these values we find the best fits {v = 0.2540 + 0.0048
(n,,;, = 100)) and (v = 0.3021 & 0.0044 (n,;, = 200)). Comparing the values of
v from these fits to our best estimate, we find that

v, = 0.288 + 0.003 + 0.034. (4.25)

Nine Dimensions. If we repeat the analysis here (similar to that in eight dimensions),
then we find a best estimate at A = 0.627 where v = 0.2975 £ 0.0025 (x = 3.3,
< 10% and n,; = 100). The value of the x? statistic doubles at A = 0.687
(v = 0.3028 + 0.0023 if n,;, = 100) and A = 0.566 (v = 0.2922 + 0.0018 if
7in = 50), Comparing these results we find that

v, = 0.2975 4 0.0025 + 0.0053. (4.26)

4.3.3. Discussion. It is generally believed that the mean span is a poorly behaved
variable, and that the calculation of v from it is not reliable (in support of this belief,
observe that (4.25) and (4.26) are far [rom the ‘known’ value 1/4). As our best
estimates we take results from the analysis of the mean square radius of gyration.
The results for the exponent v are consistently near the Flory values for v, where
v = 5/2(d + 2) (Isaacson and Lubensky 1980, sce also Bovier et ol 1984). Of
particular interest are the results in three dimensions. The results from the mean
span barely exclude 0.5, and the results from the mean square radius of gyration
include the expected value well within error bars. The estimates of v are consistent
with 0.5. We therefore conclude that we see no evidence that equation (1.1) breaks
down in this calculation.
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In eight and nine dimensions we expect that v = 0.25. Unfortunately, our data
suffer from strong corrections to scaling in these cases. (In general, the corrections
got worse with increasing dimension.) We extracted the best estimates for v only
with great difficulty, and we urge the reader to reanalyse the data in tables 3 and
4. In eight dimensions the estimate from the mean square radius of gyration data
excludes the expected value, but, due to a large systematic error, the estimate from
the mean span is consistent with the expected value. In nine dimensions the situation
is reversed. The estimate from the mean span data is inconsistent with the expected
value, but then we note that the mean square radius of gyration gives an estimate
which is close to 1/4.

The value of A has been esimated using series analysis in two dimensions by
Ishinabe (1989) (A = 0.635 £ 0.030). As a consistency check, we performed a
regression for the mean square radius of gyration data assuming this value of A
in (4.14). We find that v = 0.6404 £ 0.0058, A = 0.1248 + 0.0090 and & =
0.47 £0.33, while x2 = 4.8 (< 50%). (Error bars are 95% confidence intervals.)
These are consistent with the exact enumeration results (of Ishinabe), which are

= 0.644 & 0.004 and A = 0.1156. Observe that fixing A at 0.635 does not
change the estimate of v by more than one standard deviation, and is therefore
statistically indistinguishable from (4.17). If we consider the mean span instead, then
a linear regression is good with x2 = 9.7 (< 90%). We find v = 0.6357 £ 0.0044,
while A = 1.01+£2.67 and b = —1.05 £+ 0.13. This value of v is not consistent with
(4.22), but the sensitivity of v on A is consistent with the idea that the mean span is
a poorly behaved variable. (In these regressions we discarded the point at n» = 600,
which we believe is an outliet.)

In three and more dimensions we can use the values of A from Adler et al
(1988). In three dimensions a regression with A = 1.3 is fine (x2 = 11.7, < 95%).
We find v = 0.4921 £+ 0.0015, A = 0.189 £ 0.004 and b = 0.49 &+ 0.16. This
value of v is in the confidence interval of (4.18), and probably suffers from a sizable
systematic error (since A is not at an optimal value in the regression). An attempt
to fit the mean span data with A = 1.3 is not good. In four dimensions A = 0.8
(Adler et al 1988). An attempt to fit the mean square radius of gyration data to
this A is not good. The mean span is better; as reported, the optimal value of A is
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x2=8.7, < 75%.

In summary, in two and three dimensions, we find little evidence for preferring
one value of A over any other. In four dimensions, the data from the span does seem
to suggest A = 0.78 +0.10, but the data from the radius of gyration does not really
support any particular value. We leave the readers to draw their own conclusions;
our own opinions are summarized at the beginning of this section (below (4.14)).

4.4. The mean longest path and mean branch size

In section 2.3 we considered the mean longest path in a tree, (p, ), and the mean
branch size, {b_ ), of trees. We argued that p = ¢, where (p.) ~ n”?, and (b,) ~ n*.
In this section we consider the estimation of p and e from our data. A mean field
calculation gives ¢ = 0.5 (appendix A). The data are listed in tables 5 and 6. We
proceed as in section 4.3. In each case we attempt two fits to the data; a comparison
gives us a systematic error. If onc of the fits is bad, then we consider the variation in
the exponent with A to estimate a systematic error. We plot the mean iongest path
and the mean branch size of the trees in figures 8 and 9. We cannot visually detect
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Table 5. The mean longest path of trees. Error bars are standard deviations.

n Pn (D) Pn (3D) Pn (D) Pn (8D) Pn (D)
25 15,792 (33) 14.435 (25) 13.959 (23) 13.453 (21) 13.354 (21)
50 26.560 (70) 22.866 (41) 21.697 (37) 20463 (32) 20.376 (33)
100 4421 (14) 36.364 (68) 33.442 (55) 30.601 (48) 30354 (48)
00 74.05 (26) 57,06 (12) 51.300 (87) 45.051 (70) 44.758 (72)
300 122.15 (50) 74.57 (16) 65.62 (11) 56.564 (90 55.869 (87)
400 98.92 (28) 90.01 (20) 78.12 (14) 65.96 (11) 6537 (1)
600 166.15 (73) 117.36 (25) 100.02 (17) 82.44 (13) 81.06 (13)
800 202.83 (98) 141.48 (30) 119.74 (20) 96.40 (15) 94.58 (15)
1200 274.2 (15) 18526 (42) 153.74 (26) 119.59 (19) 117.26 (19)
1600 343.6 (21) 222.90 (53) 182,01 (29) 139.07 (23) 136.27 (22)

Table 6. The mean branch size of trees. Error bars are standard deviations,

n bn (2D) bn (3D) by (4D) by (8D) by (9D)

25 4172 (11) 3.7966 (89) 36668 (80) 3.5476 (75) 3.5203 (74)

50 6.878 (20) 5919 (14) 5.588 (12) 5.256 (11) 5202 (1)
100 11.300 (40) 9.264 (22) 8515 (I7) 7719 (14) 7.643 (14)
200 18.810 (70 14.472 (34) 12,917 (25) 11271 (18) 11.136 (17)
300 25.12 (11) 18.893 (48) 16.509 (29) 13.998 (21) 13.839 (15)
400 31.03 (14) 22.751 (5T 19.561 (34) 16.303 (22) 16.132 (22)
600 42,14 (20) 29.654 (69) 25.016 (40) 20.283 (25) 19.953 (25)
800 51.40 (27) 35.668 (82) 29.862 (48) 23.597 (28) 23.166 (28)
1200 69.34 (40) 46.56 (12) 38318 (60) 29.191 (32) 28.672 (30)
1600 86.87 (54) 56.07 (15) 45.464 (68) 34.012 (34) 33311 (33)

any curve in any of these plots, so corrections to scaling are less ‘visible’ here than
in figures 6 and 7 where we considered the mean square radius of gyration and the
mean span. We fit these data to either a two-parameter assumption

(p) = Dn (4.27)
or a three-parameter form with a power law correction

(pa) = nP(D+ cn™) (4.28)
similar to the assumptions for the mean span and mean square radius of gyration.

We assume similar functions for the mean branch size and the exponent ¢.

Two dimensions. A two-parameter fit to the mean longest path data is good with
Nin = 100 (x5 = 10.9, < 95%). The exponent is p = 0.7357 & 0.0034. If we
attempt a three-parameter fit then we observe that the x? statistic gets smaller as
A gets smaller; it is also not very sensitive to changes in A. We therefore assume
that A = 0.5. The best fit is with n_; = 50 (x; = 11.4, < 95%). We find
p=0.738+0.011. A comparison gives our best estimate

p=0.737+0.011 £ 0.002, (4.29)

A two-parameter fit to the mean branch size data is good with n, = 100
(xZ = 10.5, < 90%). The exponent is € = 0.7328 & 0.0054. A three-parameter
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fit behaves as for the mean longest path. The best A is small, but we observe that
the x* statistic does not change much with A. If we fix A = 0.5, then a fit with

Noin = 25 18 very good (x2 = 9.0, < 90%). The exponent is ¢ = 0.7388 £ 0.0074.
If we compare these results, then we find our best estimate

e = 0.7358 & 0.0074 % 0.0030. (4.30)

Three dimensions. The mean longest path data is well described by a two-parameter
fit if n_;,, = 100 (x2 = 3.3, < 25%). We find p = 0.6545 + 0.0017. A three-
parameter fit works well with A = 0.78 (n_;, = 25, and xZ = 8.6, < 90%). We

find p = 0.6534 + 0.0026. If we compare these results, then
p=10.6540 £ 0.0026 + 0.0006. (4.31)

The mean branch size fits well to the two-parameter assumption with n_, = 25
(x3 = 12.0, < 90%). The value of the exponent is ¢ = 0.6480 + 0.0012. The
three-parameter fit is best if A = 0.65, but the x? statistic does not vary much with
A (x2=1.92, < 10%). We find € = 0.6530 £ 0.0034. If we compare these results
then

€= 0.6505 =+ 0.0034 £ 0.0025. (4.32)

Four dimensions. A two-parameter fit to the mean longest path data with n_; = 100
has X% = 15.6, € 99%. We find p = 0.6117 £ 0.0014. A three parameter

fit with A = 1.11 has xZ = 15.0 (< 99%) with n_; = 25. The exponent is
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p=0.6106190.0016 £ 0.0012, (4.33)

A two-parameter fit to the mean branch size data has x5 = 18.3 (< 99%).
The result is € = 0.60503 £ 0.00092. A three-parameter analysis indicates that
the exponent is insensitive to the value of A. In fact, changing A from 0.2 to 1.0
does not change the exponent outside its 95% confidence interval of the estimate at
A=0.5 At A = 0.5 we find e = 0.6062 + 0.0060. A comparison givcs

¢ = 0.6056 + 0.0060 + 0.0006. (4.34)

Eioht dimensions. In maht dimensions one exnects a logarithmic correction to scali

Eight dimensio 18I0NS One €XPects a ic correctio ling,

but our numerical procedurcs cannot detect such behaviour. In fact, a power law
assumption (such as equation (4.28)) is better in these cases. For the mean longest
path, a two-parameter fit is very poor. A three-parameter fit is good if A = 0.46
(x% = 9.0, € 90%). We find p = 0.5166 + 0.0030. To estimate a systematic error,
we consider choices of A which double the x? statistic. If we compare the best value
of p to regressions done at A = 0.18 (p = 0.464 £ 0.018 (n;, = 50)) and 0.78
(p = 0.522 £ 0.008 (n_;, = 200)), then we find that our best value has a large
systematic error:

min

p=0.517+0.003 + 0.053. (4.35)
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A two-parameter fit to the mean branch size data with n_, = 200 is good
(xZ = 9.5, < 95%). This gives ¢ = 0.5306 + 0.0014. A three-parameter fit with
N = 25 has x2 = 3.9, < 50%, if A = 0.45. This gives ¢ = 0.5161 & 0.0028. If
we compare these results, then we find

e =0.5234 1+ 0.0028 & 0.0073. (4.36)

Nine dimensions. In nine dimensions we expect mean ficld results for our exponents.
For the mean longest path a two parameter fit is not too good, but with n . = 300
we find x% = 6.4, < 90%, which is acceptable. This gives p = 0.5326 + 0.0026.
A three-parameter fit works well, x2 = 2.6, < 25% and A = 0.52. This gives

p= 0.5121 4+ 0.0028. If we compare these results, then we find our best estimate
p=0.522+0.003 +0.011. {(4.37)

The mean branch size data fits well to a two-parameter assumption if we take
Noin = 300 (x3 = 3.6, < 50%). This gives ¢ = 0.524440.0016. A three-parameter
fit is good if we take A = 0.31 and n,,;, = 25, then x% = 4.3, < 50%. This gives
e = 0.4968 £ 0.0040. A comparisen of these results gives our best estimate

€=0.51140.004+£0.014. (4.38)

4.4.1. Discussion. The mean field calculation in subsection 2.3.4 predicted that p = «.
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where p and € agree consistently within error bars. In high dimensions p and ¢ also
turn out to be close to 1/2, which we expected to be the case from the calculation
in appendix A.

4.5. The degrees of vertices

We argued in section 2.3 that the number of vertices of degree i, {t,), is expected to
rise linearly with n. In view of assumption (2.20), we can now assume that

{t)/n=(+ynh (4.39)
We calculate the ¢; for i = 1,2 and 3 by taking a numerical limit as we have done
in section 4.2. Also, let
24
> ti{w) (4.40)
i=4

4

i !w\
»al)

H

be the number of vertices with degree greater than 3 in a tree w. In the same way,
we shall calculate (4, which we define to be the limit of (2,,)/n.

Table 7. The fraction of vertices of degree 1. Error bars are standard deviations.

d ¢ 2 s C34

202637 (2) 04978 (2) 02134 (1) 0.02513 (5)
30309 (2) 04341 (2) 02075 (1) 0.04874 (6)
4 03284 (1) 04110 (1) 02017 (1)  0.05902 (4)
8 03522 (1) 03840 (1) 0.1917 (1) 0.07211 (3)
9 03545 (1) 03815 (1) 0.0906 (1)  0.07327 (3)

We list our results in table 7. The data suggest that the {; converge as the
dimension increases. It would be interesting to determine if there is any theoretical
basis for this behaviour. The error bars in table 7 are standard deviations.
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5. Conclusions

The introduction of large, non-local, elementary transitions in a Monte Carlo simula-
tion of lattice (bond) trees proved very successful. We illustrated that the performance
of the algorithm is enhanced significantly by comparison to an algorithm with only
small elementary transitions (algorithm A). In addition, the performance of algo-
rithm B improves with increasing dimension, a theoretical limit on the growth of the
exponential autocorrelation time, measured in CPU seconds, can be estimated from
equations (4.7) and (A.3). We find

T.(B) ~n CPU seconds. {5.1)

Below the critical dimension of eight, we cannot expect such good behaviour: in
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algorithm B grow roughly like n>-? in two dimensions and like »'-® in three dimen-
sions; the exponent decreases (to 1, we conjecture} as the dimension increases. For
comparison, in the case of the pivot algorithm applied to self-avoiding walks, the
integrated autocorrelation times are believed to be proportional to n in every dimen-
sion (Madras and Sokal 1988). The pivot algorithm for polygons in three dimensions
fared slightly worse: the integrated autocorrelation times were found to grow roughly
as n!-! (Janse van Rensburg es al 1990). However, our algorithm B was found to be
much better than algorithm A, whose integrated autocorrelation times were found to
grow roughly like n2 in both two and three dimensions. This may improve in higher
dimensions, but it can never be better than n?, by the following argument. We can
think of algorithm A as ‘picking’ leaves from the tree and appending them clsewhere
on the tree. Consider the correlation between two edges on the longest path of the
tree. To destroy this (conformational) correlation, algorithm A must remove edges
from an endpoint of the longest path until it has deleted at Jeast one of these cdges.
Let the set of edges to be remaved be coloured red, and let the rest of the tree be
coloured blue. If an elementary tramsition removes a red edge and appends it to the
blue side, then this edge becomes blue, and vice versa. The number of red edges is
O(n) (see the arguments in section 2.3). Since the algorithm moves edges between
the red and blue sets, and within the red and blue sets, we can think of the number of
red edges performing a random walk on positive integers. Therefore, the number of
transitions required to remove all the red edges will be O(n?). Since each transition
takes O(1) CPU seconds, we find

7.(A) ~n? CPU seconds. (5.2)

This heuristic argument supports our belief that algorithm B is numerically superior
to algorithm A.

The grand canonical Monte Carlo algorithms for trees are necessary to estimate
the exponent  (equation (1.2)), which we cannot extract from our data. For walks,
the introduction of pivots into a grand canonical algorithm, such as the BFACF al-
gorithm (Berg and Foerster 1981) improved the performance of the Monte Carlo
simulation (see for example Caracciolo et al 198%), The way is now open for a similar
development in the simulation of lattice trees; a hybrid algorithm consisting of the
algorithm of Glaus (1985) supplemented with Jarge non-local moves from algorithm B
should perform much better than previous algorithms.
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Table 8. Best estimates for the exponents i and p. The error bars are calculated by
adding the 95% confidence interval to a systematic error.

Dimensions v P

2 0.6371 £ 0.0119 0.736 £ 0,013

3 0.4960+ 0.0052 0.6523 + 0.0059
4 0.4200+ 0.0162 0.6081 £ 0.0066

Table 8 contains our best estimates of exponents in two, three, and four dimen-
sions. For v, we take the estimates obtained from the mean square radius of gyration
data as our best estimates, and for p we take the average of the estimates from
the mean longest path data and the mean branch size data (assuming of course that
p = €). The error bars given are taken to be the maximum error in each of the
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statistical errors. Note that the exponent p is a new, intrinsic exponent for trees,
measuring the mean path length between vertices in the tree. The fact that p < 1
is interesting; it implies that in the scaling limit, the distance between two nearest
vertices of degree other than two will go 1o zero. A tree will be a highly branched
object, with an arbitrary number of branching points in every open subset of the tree.

Teble 8. The estimates for v from the literature. {(a = Series expansion, b = Monte
Carlo calculation, ¢ = Exact enumeration of animals, d = Renormalisation group, e =
Flory exponents, f = Dimensional reduction, g = Exact enumeration, k = Scanning
Method). The etror bars are those given by the authors.

Reference 2 dimensions 3 dimensions 4 dimensions
Kurze and Fisher (1979) — 0.5 0.425

Redner (1979)® 0.57+0.06 0.4510.06 —

de Alcantara Bonfim et al (1980)° — 0.55+0.05 0.450 £ 0.035
Family (1980)¢ 0.637 — —

Isaacson and Lubensky (1980)° 0.625 0.5 0.417

Gould and Holi (1981)° — 0.53 +0.02 —

Parisi and Sourlas (1981)7 — 0.5 —

Parisi and Sourlas (1981)¢ — — 0.42

Seitz and Klein (1981)® 0.613 0.48 -

Gaunt et al (1982)7 — 0.55+0.05 0.45 4+ 0.05
Derrida and de Seze (1982)¢ 0.6408 + 0.0003  — —

Dhar (1983)/ — — 0.417

Bovier er af (1984)° 0.6402 £ 0.0084 — —

Margolina er al (1984)9 0.640 + 0.004 — -——

Privman (1984)¢ 0.6394 £ 0.0067  — —
Alexandrowicz (1985)° 0.64 £0.03 0.50+£0.03 0.42+0.03
Caracciolo and Gtaus (1985)" 0.635 +0.015 — —

Glaus (1985)" — 0.495+0.013 —

Duarte (1986y® 0.650 £ 0.015 — —

Meirovitch (1987)h 0.640 £ 0.004 — —

Adler er al (1988)¢ — 0.500£0.010 0.425 £ 0.015
Ishinabe (1989)¢ 0.644 +0.004 — —

This paper (1991)% 0.637 40,012 0.4960 £ 0.0052  0.420 4 0.017

Finally, we provide a detailed comparison with results of previous estimates of the
exponent v in table 9. In two dimensions the best ecstimates are from renormalization
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group calculations: Derrida and de Seze (1982) found v = 0.6408 + 0.0003 while
Kertész (1986) estimated v to be 0.6406 + 0.0002. From a numerical point of
view we expect exact enumeration to provide the best estimates for v (in analogy
with the situation for walks). This is indeed the case, as we note in table 9. An
exact enumeration by Margolina et a! (1984) estimates v = 0.640  0.004 and a
study by Ishinabe (1989) finds v = 0.644 + 0.004, while Meirovitch (1987) uses the
scanning method (which can be considered a hybrid of exact enumeration and the
Monte Carlo method of Rosenbluth and Rosenbluth (1968) (for walks) generalized to
trees) to find that » = 0.640 + 0.004. Of the Monte Carlo simulations for trees the
best estimate was produced by a simulation done by Bovier et af (1984) who found
v = 0.6402 % 0.0084. The other Monte Carlo studies performed in the last ten
years all have results of comparable accuracy, these are the simulations by Caracciolo
and Glaus (1985) (v = 0.635 + 0.015), Duarte (1986) (v = 0.650 4 0.015) and
the resujts in this paper (v = 0.637 £ 0.01Z). (As we noted in section 2.2, the
algorithm used by Duarte fails to satisfy detailed balance; however, his result includes
the accepted value. It is difficult to guess what systematic error would be present
in his data.) The total computing time involved in estimating + using algorithm B
was about i1 hours of CPU time on a DECS000 workstation. If we compare this
fact to the resu]ts of Bovier et al (1984) and Caracciolo and Glaus (1985) we note a

T Ao e ant narfAarmanscs oan if wa talra int~ arnnnnt thoa clnauar famnntare
Uls lllIPlUVblllDlll. in Pwuuuuauw, CVEIl 11 Wl.a LahL lIII.U ﬂbqullL LllU LAYV \-Ulll}JuLlul.D

used in those studies. (Bovier er al (1984) performed a run of 180 hours on a CDC-
174/720 while Caracciolo and Glaus (1985) performed a run of 380 hours on a VAX
11/780). In defense of the grand canonical algorithms we should note that they can,
in addition to v, also estimate the growth constant and the specific heat exponent (8)
in the same run.

Studies of trees in three dimensions are not as common as in two dimensions.
The best estimate is given by the Monte Carlo simulation in this paper (v = 0.4960+
(.0052), while a heroic effort by Glaus (1985) estimates that » = 0.495 £ 0.013
(using a grand canonical algorithm). In four dimensions a similar situation is found.
The best result is given by the simulation in this paper (v = 0.420 4+ 0.017), the
only other Monte Carlo result being that of Alexandrowicz (1985) who found that
v =0.42 £ 0.03. We are not aware of any exact enumeration results in thre¢ and
four dimensions. These Monte Carlo results are close to the ‘exact” value 5/12 of v,
which resulted from Dhar’s identification of directed animals (in d dimensions) and a
lattice gas with extended hard cores in (¢ — 1) dimensions. Numerically, it is possible
that even better results in three and four dimensions could be found by an exact
enumeration study, however, with improving technology, the best numerical results
will inevitably come from Monte Carlo studies since the effort in exact enumeration
grows exponentially with increasing n.
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Appendix A. Mean field theory for e

Let ¢ be the number of trees (unrooted) with n vertices. Then it is believed that
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t, ~ n~%A", with 8 given in equation (1.2). Pick an edge in a tree. This roots
the tree at this edge. If we delete the edge, then we find two subtrees, one with
(say) k vertices and the other with n — k vertices, rooted at the vertices incident on
the deleted edge. The mean number of vertices in the smaller subtree (assume that
k < n — k without loss of generality) is then given by

nj/2
(ba) = = 3" K ty(n = k)t (A1)

T k=1

We can now evaluate this expression to find

(by) ~n (A2)
The mean field value of 8 is 5/2 (Bovier ef al 1984), so we have
e=1/2 (A3)

in the mean field approximation.
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