
A nonlocal Monte Carlo algorithm for lattice trees

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 303

(http://iopscience.iop.org/0305-4470/25/2/013)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A Math. Gen. 25 (1992) 303-333. Printed in the UK

A non-local Monte Carlo algorithm for lattice trees

E J Janse van Rensburgt and N Madrasf
t Super Computer Computations Research Institute, Florida Stale Univenity, 'Mahassee,
FL 32306-4052 USA
t Department of Mathematics and Statistics, York University, 4700 Keele Streel, North
York, Onlario, M3J 1P3, Canada

Received 29 May 1991, in final form 1 August 1991

AbsllscL A new non-local algorithm for the simulation of trem on the lattice Z d is
proposed. We study the implemenlalion and the propenies of the algorithm, and show
that it is decisively better than an algorithm which performs only local moves. We use
the new algorithm to investigate the properties of laltice trees in two, three, four, eight
and nine dimensions.

1. Introduction

The numerical and theoretical study of latticc trccs provides a natural model for
calculating the properties of branched polymers in dilute solution. It is also believed
that lattice trees share the same universality class as lattice animals (Lubensky and
Isaacson 1979, Seitz and Klein 1981, Duarte and Ruskin 1981). so that the critical
exponents of animals can be determined numerically by investigating trees, which are
simpler to simulate than animals.

The critical exponents of animals in &dimensions are related to the Lee-Yang
edge singularity (Parisi and Sourlas 1981, Fisher 1978, Kurze and Fisher 1979, Bovier

through the relations
e! a! !984) of !!IC !sing made! in an imaginary magnetic fie!d in (d - 2)-dimensiom

v (d + 2) = (u (d) + l) / d
6Yd + 2) = a (d) + 2

where U is the exponent which controls the magnetization of the king model near the
edge singularity. The exponents U and 0 are defined by (r'),, - n'" and 1 , - n-'X",
where (r ') , is the mean square radius of gyration of trees with n vertices, and t ,
is the number of (unrooted) trees with n vertices. X is the lattice-dependent growth
constant of lattice trees. Since the lsing model is exactly solvable in zero and one
dimensions (u (0) = -1, and u(1) = -1/2), we can get the 'exact'values O (2) = 2
and O(3) ~, = 312: and 4 3) = 1/2 . (Note that equation (1.1) breaks down if d = 0.)

Subsequent results indicated that t h e dimensional reduction used to derive equa-
tions (1.1) and (1.2) fails if the lsing model is in a real magnetic Add (Fisher er a/
1984, Imbrie 1984). It is therefore necessary to determine the validity of these equa-
tions by a high precision numerical simulation. lb achieve this aim, several numerical

0305.4470~2/020303+31sO4.50 @ 1992 IOP Publishing Ltd 303

304

studies have been performed (Glaus 1985, Duarte 1986, Duarte and Cadilhe 1989).
In this paper we aim to propose a better algorithm than those used in those studies,
and we use it to estimate v(d) and in particular to consider the validity of equation

Aside from their importance in statistical mechanics, lattice trees are also of
considerable interest in chemical physics as models of branched polymers in dilute
silution. There is an enormous literature on simulation of polymers in general (e.g.
Kremer and Binder 1988). Most of the Monte Carlo methods developed for branched
polymers are for trees with fvted topology, such as 'stars' or 'brushes' (e.g. Carmesin
and Kremer 1988, Whittington et a/ 1986, Lipson et a1 1987), rather than arbitrary
trees. (Polymer chemists' emphasis is frequently on polymer dynamics, but non-local
algorithms such as ours generally only give information about static properties.)

An even more basic example of a random geometric object with non-local inter-
actions is the self-avoiding walk. The simplicity of this model makes for innovative
algorithm designs for exact enumeration studies and Monte Carlo simulations. Among
Monte Carlo algorithms, the pivot algorithm brought about the most dramatic im-
provement in the simulation of walks, especially when simulated in the canonical
ensemble (that is, with fixed length) (Madras and Sokal 1987, Janse van Rensburg et
a1 1990). The basic idea of the pivot algorithm is the use of non-local elementary
transitions; that is, it tries to change large parts of the walk all at once. Borrowing
from this idea, we shall consider an implementation of large, non-local element&
transitions in a Monte Carlo simulation of lattice trees, and we shall show that this
brings about a dramatic improvement in the simulation.

Earlier studies of lattice trees and animals by exact enumeration and by Monte
Carlo methods (Peters et a1 1979, Redner 1979, Gould and Holl 1981, Seitz and
Klein 1981, Gaunt et a/ 1982) that were concerned with estimating U had estimates
varying from 0.45 to 0.53 in three dimensions; a considerable spread of results. Glaus
(1985) and Caracciolo and Glaus (1984) performed a grand canonical Monte Carlo
simulation of lattice trees estimating v(3) = 0.495 f 0.013 in three dimensions and
4 2) = 0.635 f 0.015 in two dimensions. These last results strongly support the
validity of the dimensional reduction leading to equations (1.1) and (1.2). In this
paper, we estimate 4 3) = 0.4960 *0.0052 and v(2) = 0.637 f 0.012.

"U, p a p w u,ga,,ucu d> LUIIUW3. i)GL.LLUII L yrGJGrrL3 va.J,* "Cilll l lLIVIII), UCICl lUCI

our algorithms and proves that they are ergodic and reversible, and discusses proper-
ties of lattice trees that we will study (e.g. radius of gyration, span, longest path and
mean branch size). Section 3 discusses the implementation of these algorithms on
the computer, with particular reference to the efticiency of the various steps. Section
4 is a detailed analysis of the numerical results of our simulations. Our conchsions
about our algorithms are present in section 5.

E J Janse van Rensburg and N Madras

(1.1).

_ _ _ _ ^^_^_ :" ..-""..:.."A ^^ F^11 .̂.." C.̂ .̂:̂ .. 1""..*" L"":" Aac..:.L...* A ~ r r r : l . ~ r

2. Basic definitions and methods

Let Z d be the d-dimensional hypercubic lattice. A lattice bond animal (or simply an
n n k n !) is a cmnected subgraph af zd, we define a k~trice bond tree (or simply a
tree) as an animal with no cycles. (A cycle is a walk containing at least two edges,
with all its vertices (or sites) distinct, except the first and last vertices, which are the
same.) Therefore, on a tree, there is only one path between any two given points: it
is a simp5 connected object.

Non-local Mc algorithm for Iafrice frees 305

Let w be a tree, and let zi be a vertex in w. Then we say that ZI is a vertex of
degree i if there are i edges in w incident on U. An edge x in w is a leaf if one
endpoint of x is a vertex of degree one. Deleting any edge of a tree results in two
connected components, each itself a subtree of the original tree; any subtree which
can be obtained by deleting a single edge is called a branch. Evidently, every leaf
corresponds to a branch consisting of one vertex, and vice versa; we shall sometimes
abuse our terminology by referring to a leaf as a branch consisting of one edge.

2.1. Canonical Monte Carlo algorithms for lattice trees

The symmetry group of the cubic lattices is the octahedral group 0,. Every tree in
the lattice can be transformed by any element of Oh, which is typically a reflection
or a rotation. We define now two possible algorithms for lattice bond trees in the
canonical ensemble (fixed number of sites n). Let d be the number of dimensions,
and suppose that w is an (unrooted) tree with n sites and (n - 1) edges.

Algorithm A: (Leaf-mover). In this algorithm we attempt only small moves on the
tree, i.e. one edge at a time. The essential idea is similar to that of Duarte (1986),
and to the grand canonical algorithms of Glaus (1985), and Caracciolo and Glaus
(1984). The algorithm flows as follows:
Al. Pick an edge at random on the tree.
A2. If this edge is not a leaf, then we count this as a failed transition and go to step

Al. Otherwise, we delete the leaf.
A3. Pick a vertex on the rest of the tree (which has (n - 1) vertices).
A4. Tty to append a leaf to this vertex by randomly choosing one of its 2d nearest

neighbours. If this creates a cycle then we count this as a failed transition and
we go to step Al. Otherwise, we have a succesful transition and we update the
old tree before we go to step A1 for the next attempt.

Algoriihm B: (Branch-mover). In this algorithm we attempt large, non-local transitions.
The essential idea of the algorithm is the following. We pick a branch in the tree
at random and we break it off. The branch is then transformed (e.g. rotated) by an
element of 0,. We then attempt to append thc branch at another location in the
tree.

B1.
B2.

B3.

B4.
BS.

The algorithm flows as follows:

Pick an edge at random in the tree.
Delete this edge. This breaks the tree into two subtrecs, with one subtree
typically bigger than the other.
Find the smaller subtree and apply a randomly chosen element of the octahedral
group to it.
Pick two vertices at random, onc on each of the two subtrees.
'Itanslate the smaller subtree such that the vertices chosen in step B4 are near-
est neighbours on the lattice, in any of 2d possible orientations. Look for
intersection between the (rotated and translated) smaller subtree and the bigger
subtree. If there is an intersection, then we have a failed attempt, so go back
to step B1 for the next attempt Otherwise, we have a new trce, consisting of
the bigger subtree, the (rotated and translated) smaller subtree, and a new edge
joining the two vertices chosen in step B4. Updatc the old trce and go to step
B1 for the next attempt.

The elementary transitions in algorithm A are just special cases of the possible
elementary transitions which can occur in algorithm B; if the smaller subtree (branch)

306

in algorithm B is a single vertex, then the attempted transition is identical to that of
algorithm A.

Algorithms A and B are Monte Carlo algorithms (Metropolis er al 1953) sim-
ulating trees in the canonical ensemble (with a k e d number, n, of vertices). Let
T,, be the set of all (unrooted) trees (modulo a translation) with n vertices in the
hypercubic lattice. Let the cardinality of T, be 1 , . Then it is believed that

E J Janse van Rensburg and N Madras

a...

t , - n-"X" (2.1)

where X is the growth constant for trees on the lattice, and 0 is a critical exponent.
We-assign an equal weight to each tree in T,. Algorithms A and B have finite
state space T, and we shall see that they each have the uniform invariant probability
measure

rw = t i ' Vw E T,,. (2.2)

The hasic elementary transitions of each algorithm are described by a transition
probability matrix P = {p(w + U)) = { p W w) which has the following properties:

(1) For each w, U E T, there exists an m > 0 such that the m-step probability from
w to Y , p w v (m) , is positive. This is ergodicily of the algorithm, and we prove it
in section 2.2.

rWp, , = 7r". This will be proven for algorithms A
and B in section 2.2. Therefore, it follows that rw is the unique limit distribution
of the Markov chain with state space T, and transition probability matrix P
(Kemeny and Snell 1976).

Let the observed states of this Markov chain be represented by X,. The states
X , and X,+, are in general correlated, so that the calculation of error bars for the
mean of a real-valued function A(w), w E Tn, is a complicated procedure. If we start
the Markov chain in equilibrium, then { A ,) = {A(X,)] is a stationary stochastic
process with mean

(2) For each tree Y E Tn,

(2.3)

and unnormalized autocorrelation function

The normalized autocorrelation function is defined by

Once the Markov process is in equilibrium, thcn the inregrared aulocorrelation lime is
given by

m

Non-local MC algorithm for lattice trees 307

The integrated autocorrelation time controls the statistical error in the Monte Carlo
measurements of the mean (A,) of the observable A. The variance in the sample
mean A, over N observations, is asymptotically given by

In other words, the effective number of independent observations is N / (~ T ~ ~ ~)
(Madras and Sokal 1988).

The relaxation time of the slowest mode in the system is called the erponential
autoconelution time T~ (Madras and Sokal 1988). If the normalised autocorrelation
function decays exponentially, then T~ is the rate of that decay associated with the
slowest mode in the system. If we estimate the exponential autocorrelation time
associated with a variable 2, then we indicate it by T=,+. vpically, T (the integrated
autocorrelation time) is of the same order as T~ (or better).

2.2. Ergodicity and reversibility

It is now necessary to prove that algorithms A and B are ergodic and reversible
(satisfy detailed balance).

2.2.1. Ergodicity. Both algorithms A and B are ergodic because any tree of (n - 1)
edges can be transformed into a straight line in (n - 1) steps. In detail: let w be a
tree with n vertices (and consequently (n - 1) edges). Let { e i] be the set of unit
vectors in Zd. We find the t o p v e r t e x t of w by a lexicographic ordering of all the
vertices. Since w is a tree, it has at least two leaves. There is therefore at least one
leaf which has an endpoint of degree 1 which is not 1. Move this leaf and append it
to t in the e, direction. Then there is a new top vertex: (1 +el) . Repeat this process,
delete a leaf and append it to the top vertex. Every edge that we remove must have
had endpoints with first components less than or equal to the first component of t (by
thedefinitionof t); and is moved to a locationwithendpoints (t + (i - l) e l , i + i e l)
(if it is the ith leaf to be moved). After (n - 1) iterations the vertices in the new
tree will be {1 ,1 + e , , t + 2 e l , . . . , t + (n - l)e l) , and the associated edges will
he (t t (i - l) e , , 1 + iel), where i E { 1 , 2 , . . . ,n - 1). Algorithms A and B are
therefore ergodic.

2.2.2. Reversibility of algorithm A. Let w be a tree, and let w’ be a tree that can be
obtained from w by moving a single leaf. The probability of obtaining w’ is given by
the probability of (1) picking the correct leaf, (2) picking the correct site to append it
to, and (3) picking the correct orientation when we append the new leaf. In step A1
of algorithm A we see that the probability for picking a particular leaf is l / (n - 1).
The resulting tree has (n - 1) sites left, so the probability for picking a particular
site is l / (n - l) , and there are 2 d possible ways of attempting to append the new
leaf. Therefore

1
p (w - w’) = 2 4 n - 1) 2 (2.8)

where p (w -U‘) is the probability of obtaining w’ from w by moving a single leaf.
The reverse process is obviously the same: therefore

p (w - w‘) = p(w’ - w) (2.9)

308 E J Janse van Rensburg and N Madras

I

Figure 1. If an algorithm for trees picks leaves and places lhem back by selecting a Bile
at random from the perimeter of the tree, lhen il is not reversible. The marked leaf
in (0) is picked with probability 113. I1 is put back in (b) with probabilily 118. I f we
iFa3e ;he piolmn, iiico *e Biid i i r io inme f" (ij io {bj, Sild ; i s io move tiom
(b) 10 (4.

whenever p (w - w') > 0. Also, equation (2.9) clearly holds if p (w - w') = 0, and
so algorithm A is reversible.

We note that the algorithm for site trees of Duarte (1986), and also Duarte and
Cadilhe (1989), is not reversible. Consider for example the tree in figure l (a) . In their
algorithm a choice is made from the leaves, and the leaf is deleted. With probability
1 / 3 we obtain the tree in figure l (b) . The algorithm then selects a site from the
perimeter set of the tree, and attempts to append the leaf there. In figure l (b) , there
are eight perimeter sites, so we obtain figure l(c) with probability 1 / 8 from 1(6),
and with probability 1/24 from l(a). A similar argument shows that the probability
of obtaining l (a) from t(c) is 1 /32. The algorithm is therefore not reversible.
Reversibility ofAlgm'fhm E. Let w be a tree, and let w' be a tree that can be obtained
from w by moving a single branch of w. The probability of obtaining w' is given by
the probability of (1) picking the correct branch, (2) choosing the correct element of
the octahedral group to rotate the chosen branch, (3) picking the correct vertices on
each branch to reconnect the tree, and (4) putting the chosen vertices in the correct
orientation to each other. We choose a branch by deleting an edge; this can be done
in (n - 1) ways, if the tree has n vertices. Suppose that the octahedral group has
oh elements, that the number of vertices in the branch is k, and that we perform the
algorithm in d dimensions. Then

1
--t w') =

2 d o * k (n - k) (7 z - l) '
(2.10)

The procedure can easily be seen to have thc same probability if we start from w'
and construct w. It is therefore in detailed balance. (Note that evely g E Oh has an
inverse, so we can always perform the attcmpted transition in reverse.)

2.3. Properlies of lullice frees

In this scction we consider the properties of lattice trees (for an example of a
lattice tree, see figurc 2) that can be mcasured by a canonical simulation of lattice
trees in the cubic lattice. Let . ; (U) , i = 1 , 2 , . . , , d , be the ith cartesian coordinate
of the vertex 71. Let w be a lattice tree, and let U, be the ith vertex of the tree. Then
we have the following definitions.

Non-local MC algorirhm for lattice freer 309

Figure 2. A lattice tree with 5000 vertices.

2.3.1. Mean square radius ofgyration. Let T' , (w) he the square radius of gyration of
w. That is

It is widely believed that there exists a critical exponent v such that

(r:) - n2u (2.12)

where the mean is taken over all conformations of trees with n vertices.
measures a length scale for trees.

23.2. Mean span. Let d be the spatial dimension. Then we define s,(w), the mean
span of the tree w, by

(6)

(2.13)

If we assume that there is only one length scale for lattice trees, then we expect from
equation (2.12) that

(S ") - n" (2.14)

where the mean is taken over all the possible conformations of trees.

2.3.3. Longestpafh in the tree. Let p,(w) be the length of the longest self-avoiding
walk in the tree w. We are immediately interested in the behaviour of p,(w) with

a6 he a longest path in the tree starting from a, and let br he a longest path in
the tree starting from 6. Then b r is a longest path in the tree (Dewdney 1985a; for
an elegant proof, see Dewdney 198Sh). The longest path in the trec is an intuitive
'measure' of how far the tree differs from a self-avoiding walk, that is, to what extent

We Cl!! eaoi!y find p n (L l) in !he fo!!owi!?g "y. Le! a bP nay vertex in U. k t

310

is it entropically favourable to add appendages onto the walk rather than making it
longer. We define the exponent p by

E J Janse van Rensburg and N Madras

(P A - np (2.15)

where the mean is taken over all the possible conformations of trees. If p = 1, then
a lattice tree is essentially a decorated self-avoiding walk. Since self-avoiding walks

< i, it is
also useful to note that p , is at least as long as the span, so that U < p.

2.3.4. Mean branch size. Let b,(w) be the mean size of a branch in w obtained by
deleting an edge in w with uniform probability. We define the exponent c by

and trees do not be;ong to the sBme universaiiiy cirss, we expect [bat

/ h \"nl \ -. ' - (2.15)

where the average of b, is taken over all the conformations of trees. We can guess
the value of t in the following way. Suppose that the structure of the tree is that
of a longest path which contains @ (n p) edges, and with @ (n e) smaller branches
which sprout from the longest path. (Here @(n') means at least cn' and at most
Cn2 for some C c > 0) . The total number of edges in these smaller branches is
n - @ (n p) , so each branch has an average size of O(n'-P). Ifwe pick an edge from
the longest path, then we separate the tree into two pieces which each have @ (n)
edges, since each piece of the longest path will have O (n p) edges and of the same
order of side branches. If we pick an edge not on the longest path, then the size of
the branch picked is @(no), where U satisfies 0 6 U 6 1 - p. We therefore expect
that

- @(nP) f @(no). (2.17) @(n).@(nP) + @(no) .@(n - nP)
n (6 ,) -

Hence we conclude that t = m a x { p , a } , where U < (1 - p) . Next, to see that
t = p. we argue heuristically as follows. Tike a branch of the tree of size O(n ' -P)

not contain the edge which touches the longest path is @ (n u) , by definition of U.

Therefore, in a tree. of n vertices with a single randomly labelled leaf, if we delete
an edge and take the component which does not contain the labelled leaf, then the
size of this component is @ (n O / (' - P)) . The probability that the labelled edge is
in the smaller branch is (b ,) / n = @ (n ' / n) , by definition of e, so the expected
size of the branch which does not contain the labelled leaf is @(no/('-+')) = (n -
@ (n O) @ (n (/ n) -t O (n f) (l - O (n r / n)) = @(ne) . Therefore, U = t (1 - p) < e.
Combining this with E = m a x { p , o}, we conclude that

and de!etc an edge 8! r2ndom; the size of the component of the branch that does

p = c . (2.18)

2.3.5. Accepfancefraction ofalgorirhmsA and B. A pattern theorem for trees (Madras
1989) allows us to estimate the behaviour oI the acceptance fraction af the algorithms.
It implies that any k e d arrangement of edges in a tree will occur @ (n) times on
average in a tree of sufficient size. If an arrangement of edges are selected which
allows an additional'edge to be added to it, then it appears that there are @ (n)

Non-local MC algorithm for lattice trees 311

locations in the tree where a proposed leaf may be added on average. Also, there
are @(n) leaves. Therefore, the acceptance fraction of algorithm A, ft, satisfies
liminf,,, ft > 0, and we in fact expect it to have a limit:

lim f," = c (2.19)

where the constant C is dependent on the spatial dimension. The same applies to
algorithm B, since f! > f;.
2.3.6. The degrees ofthe vertices in the tree. The pattern theorem for trees also predicts
that the frequency of vertices of degree t i , i = 1 , 2 , , . . , 2 d , in a tree is @(n). If
the number of vertices of degree i in a given tree is given by ti. then we expect that

"-m

lim - (t i) - - c i . for 1 < i < 2 d (2.20)
n-m n

where C; is a constant dependent on d, and where the tree has n vertices.

3. Implementation of the algorithms

The implementation of the algorithms deserves some attention, since big savings in
computer time can be obtained by carefully designing the code. The algorithms were
both programmed in FORTRAN77. We first describe the programming of algorithm B,
since algorithm A can be viewed as a special version of algorithm B, where we only
allow the moving of leaves.

Suppose that we are considering a tree in d dimensions with n vertices. The
following permanent data structures were set up:

(A) A list of vertices of the tree in an n x 3d array V . The first d addresses in
the ith row of V contain the coordinates of the ith vertex of the tree. The
remaining 2d addresses (V (i , d + l) , V (i , d + 2) , . . . , V (i , 3 d)) are pointers
which point to the labels (i.e. row numbers) of vertices which are connected to
the ith vertex in the tree. (Some of these addresses will he empty if the degree
of the ith vertex is less than 2d.)

(B) A hash-table H T A B (an m x d array) (Knuth 1973). Here m is a fmed
number (m = 10n is sufficient). The vertices of the tree are hashed into the
table using a hash-function (Madras and Sokal 1988) and linear probing. We
need to perform three operations on H T A B . If v is any vertex, then these
operations are
(a) V E H T A B ?
(b) Add U to H T A B .
(c) Remove from H T A B .
It is easy to write fast subroutines to perform these tasks on H T A B (see Knuth
(1973) for details). The advantage of using the hash-table is that we can use
operation (a) to perform an efficient check that a proposed new configuration
is self-avoiding (and thcrefore a tree).

(C) A list of labels S M A L L (an n / 2 x 2 array). We store the labels of the branch
that we attempt to move in one of the two columns of S M A L L .

(D) A list A (an la-element vector). A is initialized to contain a zero in each
address. We shall use A to identify which vertices are not in the branch that
we attempt to move.

312 E J Janse van Rensburg and N Madras

We can now implement algorithm B in the following way:

(Bl-B2) Choose an edge at random from the tree. We do this by using rejection:
We pick i E { 1 , 2 , . . . , T I] and j E {d+ l ,d+2 , . . . , 3d) at random. If
V (i , j) is empty, then we try again; othenvise, we pick the edge whose
endpoints are given by i and V (i , j) . On average, the number of tries
needed to find an edge is d. We delete this edge, separating the tree into
two subtrees or branches.
Perform a depth-first or breadth-first search (Wilson and Watkins 1990)
on the two subtrees simullaneously, starting at the endpoinlx of the chosen
edge, to find the branch which we will attempt to move. This amounts
to searching alternatingly on the two subtrees, reading the labels of the
vertices encountered into S M A L L (. , i) , choosing i = 1 or 2 for each of
the two subtrees. As soon as one of the two subtrees has been completely
searched, we know that it must be the smaller subtree (branch), and we
pick i to be 1 or 2, whichever corresponds to the branch. The labels of
the vertices in the branch are then written in the ith column of SMALL,
in order as we detected them by the search. Once we have determined the
labels of the vertices of the branch, we update the list A by putting a 1 in
each address which is a label of the vertices on the branch. This is a very
convenient arrangement. By simply querying A, we can detect whether a
vertex is in the branch, or in the rest of the tree. It is also easy to reset
A to all contain all zeros: The addresses of A which contains non-zero
elements are the labels of the vertices on the branch, which are listed in
S M A L L . Note that the amount of 'work' performed in this step is of the
order the size of the smaller subtree.
Pick a vertex z on the branch, and another vertex y on the rest of the tree.
The vertex z can be picked uniformly from the list in SMALL. We pick
the vertex y by rejection from V, querying the list A to determine whether
the vertex is in the branch. Since the number of vertices in the branch is
at most n / 2 , the average number of attempts is at most 2.
The branch is now rotated by applying a randomly chosen element of the
octahedral group to it. We then translate the rotated branch so that the
vertcx z on it will be a nearest neighbour of the vertex y on the larger
subtree. This is one of 2d possible positions, chosen at random. The
proposed tree is now formed by adding the edge between the vertices z
and y. The last step in the algorithm is to check for self-intersections in
the proposed tree. This is easily done by querying the hash-table HTAB
and the list A. A particularly effective way of performing the check is to
start at the vertices T and y, alternatingly performing a breadth-first'search
on the two subtrees. Since the two subtrccs are in closest contact at z and
y, it seems likcly that an intcrsection will occur near these vertices, if it
occurs at all. We perform stcp B5 efficiently by rotating the vertices on the
smaller trec one by one, testing for intersections each time we calculate the
new coordinates of another vertex.

(B3)

(B4)

(B5)

I f the conformation is not self-avoiding, then we reject it, we reset the list A
to its null-values and start a t step E l . Otherwise we accept the new tree, update
the vertices in V and update the hash-table by removing the old vertices from it and
adding the new vertices to it. Lastly, we reset the list A to its null-values we take data.

Non-local MC algorithm for lattice freer 313

The Size of an average branch on the tree is expected to grow as R' (recall
(2.16)). The searches (depth-first and breadth-first) which we perform to identify
the branches take therefore O(nf) operations. Updating the old tree in case of
a successfu~ attempt, and updating the hash-table and other lists also takes O(n')
operations. We therefore expect the average amount of work per iteration in the case
of algorithm B to be O (n c) .

The implementation of algorithm A is simpler than that of algorithm B. We retain
LIIC uaca x I u u u i c s v anu n 1 AD, DUI we nore now that we do not need SMALL
and A, both of which are necessary to search and store branches in algorithm B. An
implementation of algorithm A would be:

(Al, A2) Choose an edge from the tree, in exactly the same manner as was done in
algorithm B. If the edge has one vertex which is of degree one, then delete
it, else we reject the attempt, and try again to select an edge.

(A3, A4) Pick a vertex on the tree, and one of its neighbouring sites with uniform
probability, and attempt to add an edge between the two sites. If the
neighbouring site is already occupied, then we reject the attempt, and start
again at step Al. Otherwise we add the edge, and update the tree and the
hash-table. We take data and start again from step Al.

The amount of work per attempted iteration of algorithm A is evidently O(1).
At every point in the algorithm we only deal with at most two vertices, and .there is
no explicit n-dependence in any of the operations performed.

The number n + i (w) of a tree w with n vertices, where 7; is the square radius
of gyration, can be calculated using only integer operations. We also note that after
every successful attempted transition we can 'update' n27; by simply subtracting
the old vertices and adding the new. The span of a tree, sn, the longest path p ,
and the degrees of the vertices of the tree take O(n) operations to calculate. In
view of these facts, it seems best to sample these properties of the tree every n
attempted transitions, for it is not sensible to spend O(n) operations calculating the
span of a tree while less than n iterations seperates it from the last configuration
that was sampled: We may end up spending more time calculating the span and
other properties than updating the tree into new regions of configuration space. The

attempted iteration; we therefore calculated these numbers as block-averages over
blocks of data of length R.

The data were written as a stream of numbers during the runs and stored for
analysis. We used a time series analysis to find the autocorrelation times for each of
the variables (Madras and Sokal 1988). The number of iterations performed for each
run was typically 10000n, which gives us loo00 data points, and error bars of about
one per cent on the calculated variables. The program proved to be extraordinarily
efficient; for example, the results in four dimensions were obtained by a total of 11.5
hours of computer time on a DEC5000 workstation (with RISC-technology). At each
value of n the initial tree was chosen to be a Straight sequence of edges with no
branches. Algorithm B was applied to this initial tree until all initial bias disappeared
from the data. This relaxation was very fast for small n, but took up to 5 x 105
itcrations for longer trees.

.L^ A-.- ~ .___^ ~ T I ._I r r m 1 r, L ~ ~ . ~~~~ ~~ ~.

"~-~."..~- P P ~ P ~ + ~ ~ P P F r i r t i r r n .."-..".., the ..._ m e ~ n ..._".. hrnnrh -.".._.. E I V P yLI-.) ".." nnrl ~ 2 , ; be npdated after eve;.,.

314

4. Numerical results

4.1. Comparing algorithms A and B
It is not immediately obvious that algorithm B will perform better than algorithm
A in a numerical test. This is because algorithm A can perform O (m) attempted
iterations for every one attempted move of a branch of m vertices by algorithm B.

In this section we shall compare these algorithms by comparing the autocorre-
lation times in units of the amount of work performed by the CPU. A convenient
measure of 'work' is the CPU time used by the algorithms in generating the trees, ex-
cluding the time required for taking any measuremens of the properties of the trees.
By comparing the CPU time per iteration of algorithm A and algorithm B, we can
find a ratio T: which is the average number of attempted transitions in algorithm A
per one attempted transition in B (for the same amount of CPU time). If we calculate
the autocorreiation times of aigorithm B in units of n attempted iterations, then we
should expres it in units of ?-in attempted iterations for algorithm A. The algorithms
are then compared by taking the ratio of the autocorrelation time of algorithm A (in
units of rfn attempted iterations) to that of algorithm B (in units of n attempted
iterations). Since the number of 'independent observations' in the data stream of the
algorithm is inversely proportional to 7, we are in fact calculating the ratio of the
number of independent ohsenations obtained by algorithm B for every independent
observation by algorithm A (for the same amount of CPU time).

E J Jame van Rensburg and N Madras

Table l(o). A comparison between the autocorrelation times with respect to the mean
square radius of gyration of algorithms A and B in two and three dimensions. The
autocorrelation ti" are in units of <BA" and n attempted iterations for algorithms A
and B respectively.

n r: r, (A) r, (B) M(B,A)

WO dimensions 25 6.2 4.34 1.51 0.60
50 1.4 10.4 1.92 0.43

100 9.0 34 2.9 0.29
200 11.7 76 3.8 0.23
400 15.6 I24 5.7 0.21

Three dimensions 25 7.0 2.7 0.93 0.59
50 8.2 7.1 1.00 0.38

100 9.2 16 1.03 0.25
200 10.6 35 1.6 0.21

In tab!e ?(E) we c.ompare the a!gorithms in two and three dimensions with respect
to the mean square radius of gyration. The rcsults for the other global properties
(mean span, mean longest path, and mean branch size) are very similar. In the
first column we list the number of vertices of the tree under consideration. The
second column contains T:, the number of attempted iterations of algorithm A for
every attempted iteration in algorithm B. The third and fourth columns contain the
autocorrelation times of algorithms A and B respectively, and in the last column we
list M(B,A), the square root of the ratio of the autocorrelation times of algorithm B
to that of algorithm A. We can expect that the confidence intervals in algorithm B
will be smaller than that of A by this factor. We see that algorithm B outperforms
algorithm A significantly. In two dimensions, for n = 400, we can expect error bars

Non-local Mc algorithm for lattice trees 315

Table l (b) . The autocomelation limes of algorithm B, measured from the mean square
radius of gyration and in units of n attempted ilerations. Error ban are standard
deviations.

n T r l (20) r,l (30) T,2 (I D) Trz (80) r+ (9D)l

25 1.509(77) 0.927(40) 0.794(M) 0.728(31) 0.707.(27)
50 1.92(12) 1.6)3(43) 0.828(31) O.haS(22) 0.682(26)
1W 2.90(M) 1.033(49) 0.750(24) 0.642(21) 0.676(26)
200 3.80(%) 1.57(14) 0.840(35) O.h21(20) 0.638(24)
3W 4.36(37) 1.230(68) 0.783(30) 0.615(24) 0.61q20)
400 4.79(42) 1.271(60) 0.776(30) O.h22(M) 0.589(19)
6W 6.W(60) 1.249(59) 0.729(28) 0.612(21) O.SBS(19)
8W 7.08(73) 1.313(67) 0.752(29) 0.585(19) 0.611(23)

1 Z N S.ZS(93) 1.48(11) 0.708(27) 0.566(18) 0.590(23)
16W llJ(Z0) 1.452(69) 0.732(28) 0.557(17) 0.57q22)

which are about five times smaller had we run algorithm A (for the same amount of
work).

It is striking how the superiority of algorithm B improves with n, the number of
vertices in the tree. A plot of the autocorrelation time against n on a log-log scale
shows linear behaviour; we therefore expect that r will grow as a power of n. A
simple weighted least squares fit to the data in the table (where we also take into
account data for algorithm B for trees consisting of up to 1600 vertices, as listed in
table l(b) implies that

T , . ~ (A) * n1.3*0.2 (4 4
rr2 (8) -, n0.45*0.04 (4.2)

rr2 (A) -, n1.3*0.1 (4.3)

in two dimensions, and in three dimensions,

(4.4)
o.tzia.a3 r,..(B)- n

where the statistical errors are 95% confidence intervals. Here we have measured
the autocorrelation times in units of n attempted iterations for algorithm B, and in
rzn iterations for algorithm A. (Note that since the mean CPU time per attempted
iteration in algorithm B is believed to go as n', if we want to measure autocorrelation
times in CPU seconds, then we must add (1 + E) to all of the exponents above).

Comparing equations (4.2)-(4.4) suggests that algorithm B performs better in
three dimensions than in two, with the autocorrelation times growing slower with the
number of vertices in the trees in three dimensions. I n contrast to this, algorithm A
has autocorrelation times which depend similarly upon n in two and three dimensions.

In higher dimensions, an examination of table I(b) suggests that the data points
are only weakly correlated, if at all. In retrospect, the algorithm is even better than
we suspected. Assume that the path between two given vertices on the tree has,
on average, @(no edges. The correlation between these points are destroyed in
the algorithm if we pick an edge on the path between thc vertices and perform a
successful transition. In the mean field approximation, the probability of this event is
roughly @(ne-') . After m iterations, the correlation between these vertices are

s, - (1 - @ (n c - ')) m . (4.5)

3 16

The exponential autocorrelation time (of a global quantity X, such as the path length
between the vertices, or the Euclidean distance between the vertices) can be esimated
from this expression (for a similar analysis involving the pivot algorithm and the self-
avoiding walk, see Madras and Sokal (1988)). We find

E J Janse van Rensburg and N Madras

T ~ , ~ (B) = o(n'-') iterations. (4.6)

We calculate the mean field value of E in appendix A to be 1/2. Therefore, the best
possible behaviour for the algorithm is when

T , , ~ (B) = O(n'") i terations. (4.7)

(If we express this in units of n iterations, as we do in equations (4.1)-(4.4), then
we have T , , ~ (B) - n-0.5 for the best possible behaviour ofalgorithm B.) Thus, the
data in table l (b) tell us that T is between O (6) and O(n) iterations in four and
more dimensions. In general, the autocorrelation times will depend on other factors,
such as the acceptance fraction of moves involving large subtrees. We discuss this in
the next section.

Tabk 2@). The acceptance fraclion of algonlhm A, ft, in two and lhree dimensions.
Error bars are standard deviations.

4.2. The acceptance fraction of proposed moves

As explained in section 2.3, we expect that the acceptance fraction of algorithm A
will converge to a constant value, as n tends to infinity. The acceptance. fractions of
algorithm A in two and three dimensions are listed in table 2(a). We obtained the
data over 40000nri observations, where the T: are listed in table l (a) . 'lb obtain
an estimate of the limit C in equation (2.19), we assume that

f," = c t yn-6 (4.8)

where C , y and 6 are parameters which we should obtain by a weighted least squares
fit to the data in table 2(a) . This form assumes possible non-analytic terms in f,",
and it seeks to estimate the largest of them. From a three-parameter weighted least
squares f i t to the data we find that

0.0897 f 0.0007 i f d = 2
0.168 + 0.002 i f d = 3

lim f,̂ =
n-m (4.9)

Non-local MC algorithm for lattice trees 317

Table 2(b) . The acceptance fraction of algorithm B, fz, in two, three, four, eight and
nine dimensions. Error ban are standard deviations.

25 0.22596 (92) 0.4301 (11) 0.5733 (11) 0.80441 (81) 0.82925 (76)
50 0.17550 (70) 0.36767 (76) 0.51964 (74) 0.78764 (60) 0.81453 (56)

100 0.14950 (50) 0.32980 (52) 0.48130 (53) 0.77509 (44) 0.80570 (40)
2011 0.!3650 (30) 0.?06!9 (39) !3.456% (59) 0.76852 (21) G.8Md2 [29)
300 0.13182 (29) 0.29736 (32) 0.44613 (33) 0.76545 (26) 0.79876 (24)
400 0.12912 (25) 0.29342 (28) 0.44063 (28) 0.76356 (22) 0.79697 (20)
600 0.12755 (20) 0.28848 (25) 0.43371 (23) 0.76148 (18) 0.79585 (17)
800 0.12651 (17) 0.28622 (21) 0.43015 (20) 0.76037 (16) 0.79516 (15)

1200 O.12MS (15) 0.28325 (18) 0.42609 (15) 0.75900 (13) 0.79428 (12)
1600 0.12466 (14) 0.28236 (16) 0.423% (15) 0.75843 (11) 0.793951 (97)

,-A,

The error bars are 95% confidence levels. In both cases, the value of 6 was close to
1 (1.02 i 0.05 and 0.94 i 0.05 for d = 2 and d = 3 respectively).

We expect that algorithm B will have a higher acceptance fraction than algo-
rithm A, since we will have all the succesful transitions which occur in algorithm A,
as well as succesful transitions involving branches of different sizes. The acceptance

dimensions. Assuming equation (4.8) again, we find that
fractions of a!gorithm I! are !isred in tab!e. 2(b) fer hue, three, fe??r, Pight 2nd ninc

0.1229 h 0.0003 i f d = 2
0.2761 i 0.0005 i f d = 3
0.4114 i 0.0004 i f d = 4 I 0.7920 i 0.0003 if d = 9.

(4.10) lim f," =
n-m

(We discuss the case d = 8 below). We find that 6 is close to 1 only in two
dimensions (6 = 0.98 i 0.04). In three dimensions we find that 6 = 0.79 i 0.02, in
four dimensions 6 = 0.62 f 0.02 and in nine dimensions 6 = 0.71 i 0.03. The rate
of approach to the limit is considerably slower than n-l in these three cases.

We see in tables 2(a) and 2(b) that the confidence intervals on our data points
are very small (a few tenths of a per cent at most). We expect that the presence of
a term that goes to zero slower than a power of n will probably spell difficulty for
our fitting algorithm. In fact, in eight dimensions Newton's method fails to converge
for the data in table 2(b). This suggests that there is a term which converges slower
than a power of n. One way of dealing with this is to assume that

f," = C+yllognl-6. (4.11)

A weighted least squares analysis gives

lim f," = 0.7484f 0.0007 if d = 8. (4.12)

We obtain 6 = 2.12 h 0.07. (Tb check assumption (4.11) we plotted Iog(f! - C)
against log /log n1 in eight dimensions using C-from equation (4.10). The result was
a straight line. The analogous plot in nine dimensions was strongly curved.)

The acceptance fraction of algorithm B increases significantly with the dimension,
which suggests that the algorithm is more ellicient in higher dimensions. lb examine

n-m

318 E J Janse van Rensburg and N Madras

size (m)

Flgurr 3. The size distribution of proposed branches in the algorithm. The data is from
trees of size 800.

this suggestion more precisely, we consider the mean size of the proposed branches
and the mean size of the accepted branches in different dimensions for lixed n (the
number of vertices in the tree). In figure 3 we plot the number of proposed branches
of size m against m on a linear-logarithmic scale. The number of iterations was
8MMMM and n was 800. We see that the biggest branches are proposed in two
dimensionsi and that the incidence of big proposed branches declines as we increase
the number of dimensions. In fact the mean size of a proposed branch declines from
51.4 in two dimensions, through 35.7 in three dimensions to 29.9 in four dimensions,
23.6 in eight dimensions and 23.2 in nine dimensions. While these numbers at first
sight seem to indicate that algorithm B will be more successful in lower dimensions, it
is really the acceptance fraction of the larger branches which will make the difference.
In figure 4 we plot the acceptance fraction of branches of size m, f:(m), against m
for algorithm B. We see that the acceptance fraction for a given value of m increases
rapidly with dimension, reflecting the behaviour of the acceptance fraction integrated
over m. Combining the above data, we calculated the mean size of the accepfed
branches: This is only 2.45 vertices in two dimensions, and increases through 4.85 in
three dimensions to 8.61 in four dimensions, 19.61 in eight dimensions and 20.26
in nine dimensions (for eight and nine dimensions these are 83% and 87% of the
proposed branch sizes respectiveiy). rhus, even though the mean size of the proposed
branches decreases with dimension, we find that the mean size of branches which are
involved in successful transitions increases with the number of dimensions. We expect
therefore that algorithm B will perform more effectively in higher dimensions. These
effects can also be seen in the scaling of the autocorrelation time with n, which we
discussed in section 4.1.

4.3. The mean square radius of gyralion and the mean span

The mean square radius of gyration, (r z) , and the mean span, (s), of trees measure
a universal length scale defined by the exponent U on the lattice. ?b estimate U,

- 1 " " I " " l " " - - -
. -

+..*...̂
n inn zoo 300 400

sine (m)

Figure 4. The acceptance fraction of branches of size m. ?he higher the number of
dimensions, the higher the acceptance fraction. More interesting, 1he curves do not go
to zem with increasing branch size, but reach a plateau. I t is a l m o ~ l as likely tar a
branch of size 400 to be accepted as a branch of si2e 100. The dala is from trees of
size ann.

we begin with the scaling relation (T ') - An2". We can write this asymptotic
relation as an equality with (infinitely many) correction-to-scaling terms: (r2) =
An2"(1 + bn-A + . . .). Our job is to fit a curve (r 2) = f (n) to the data. There are
mo o~vious c~oices for ['ne form of we shuuid eiimindie aii of the
correction-to-scaling terms, giving the two-parameter family of curves

cume:

(T ~) = AnZ" (4.13)

or else we should eliminate all but the dominant correction, giving the four-parameter
family

(T ') = An2"(1 + bn-A) . (4.14)

The form (4.13) is appropriate if the values of n under consideration are all large
enough so that the actual corrections to scaling are smaller than the statistical errors
in the data; thus, if a log-log plot of the data is clearly linear, then we should be
>'lLIJIIC" L l l d l w c I I C 111 LEI* " J J L " p " L 1 c 'C~""C 'Ill" nvan n n u . L1.S L Y L I B I ,-.x,p ("L

course, one should also check fits of the form (4.14) as a standard procedure, even
if the plot appears very straight to the eye,) On the other hand, if this plot shows
strong curvature, then our first choice should be the form (4.14). Of course, there
is no guarantee that the best cuwe of the form (4.14) will reflect the true value of
A, since we do not know the size of the omitted correction terms (when n is small,
the omitted terms are large, so it is hard to see A from data corresponding to small
values of n; while when n is large and the omitted terms are small, then the included
term B n - A is also small). It is very likely that one ends up estimating some effective
exponent A,, which has no intrinsic physical meaning. Thus we take the cautious
view that unless the data speaks very strongly to the contrary, the parameter A in

n..s:nC...4 .Ln* ...- " - ~ :- .LI1 "".,__ .,.+:" , . ,nwb .&+h +ha fnrm l d 121 Inf

320

(4.14) is no more than an aid to the extrapolation of a finite amount of data into the
n - 00 asymptotic regime. In the data presented in this paper, we find no strong
evidence for any particular values of A; instead, the best that we feel justified in
doing is testing the consistency of other researchers' values of A with our data.

In practice, one would like to perform linear least squares regressions. This is
accomplished by taking the logarithms of (4.13) and (4.14). The scaling assumptions
are then

E J Janse van Rensburg and N Madras

log(r2) = a + 2v log n
log(r2) = a + bn-A + 2vlogn.

(4.15)
(4.16)

If we fuc A in (4.16), then v is obtained by a linear regression. The data points
from the smallest trees will suffer most from corrections, so we attempt to minimize
LllCll LIIIIUGIICC vy rllruwrrrg away "ala purrtra ,lull, LllC *lllallc.l L L c c > . w= G>L,,L,a,c L U G

parameter v by performing weighted least squares regressions for the model (4.15),
in which the weights are determined by the estimated error bars. The best choice
of nmin (the smallest value of n that we do not throw away) is determined by the
associated x2 statistic: the (weighted) sum of the squares of the distances of the data
points from the fitted curve (see e.g. Silvey 1975). When the model is correct, this
statistic has a xi distribution (here I C , the number of degrees of freedom, equals the
number of data points used minus the number of model parameters that we are trying
to estimate). Since our scaling assumptions are imperfect, a typical regression will
provide best estimates of our parameters in a biased fashion: there is a systematic
error present. We can attempt to estimate this error, where possiblc, by comparing
results from two different scaling assumptions. In most cases we can compare the
results from a two-parameter fit (4.15) to a three-parameter fit (4.16).

Table 3. The mean span of trees. Error bars are standard deviations.

&LA:- :..n..---- L.. .,. :..- ~ ... A,..,. -- :-.- c-_... .L̂ ".....I,-- 117,. ,.".:...".-.I.̂

" Sn (ZD) 3n (3U) 3" (9 0)

25
50

100
200
300
400
600
800

1200
! L K

6.842 (32)
11.147 (22)
17.915 (42j

36.79 (11)
28.188 (73)

44.67 (14)
58.60 (21)
69.70 (2h)
90.48 (36)

! f i ? , q IC<\
\I-.,

4.2107 (59)
6.4020 (88)
9.471 (13)

13.773 (20)
17.039 (23)
19.821 (28)
24.440 (35)
28.358 (39)
34.929 (51)
4G.3PL IC'' Y ' ,

3.2197 (44)
4.7449 (58)

9.3560 (99)
6.7354 (75)

11.2h4 (12)
12.835 (13)
15.378 (16)
17.444 (17)
20.925 (20)
2 3 . y 177,

I--,

1.9026 (21)
2.7970 (29)
3.8502 (35) \ ,
5,1000 (44)
5.9578 (49)
6.6149 (52)
7.h392 (61)
8.4546 (64)
9.6h98 (71)

1 0 6 1 < C ,771
."..I. _ _ ,.,,

1.7510 (19)
2.5883 (25)
3.5669 (32)
4.7410 (39)
5.5208 (43)
6.1331 (47)
7.0699 (53)
7.7848 (58)
8.9017 (64)
9.778! $9)

We examine the mcan squarc radius of gyration (with scaling assumptions (4.15)
and (4.16)) and the mean span (with scaling assumptions analogous to (4.15) and
(4.16)) for each of the dimensions considered in our simulations. We list our results
in tables 3 and 4. In what follows wc give all statistical error bars as 95% confidence
intervals.

Non-local MC algorithm for lattice meer 321

Table 4. The mean square radius of gyration of trees. Error bars are standard deviations.

n e, (W) (3D) (4D) .2, (W) r? (9 ~)

25 8.181 (35) 4.673 (14) 3.7028 (86) 2.8717 (46) 2.8108 (42)
50 19.43 (IO) 9.054 (28) 6.460 (16) 4.5208 (69) 4.3829 (65)

100 46.89 (29) 17.823 (55) 11.293 (26) 6.8984 (96) 6.6559 (91)
200 11240 (80) 34.75 (12) 19.686 (45) 10.356 (14) 9.948 (13)
300 186.3 (15) 51.66 (19) 27.263 (60) 13.053 (16) 12.479 (15)
4W 271.2 (22) 68.73 (26) 34.312 (76) 15.3% (18) 14.597 (16)
6W 474.7 (44) 102.51 (37) 47.72 (IO) 19.269 (21) 18.238 (19)
800 654.0 (66) 136.25 (51) 60.31 (13) 22.635 (23) 21.298 (21)

12W 1093.0 (13) 203.97 (83) 84.64 (17) 28.211 (26) 26.503 (24)
I6W 16220 (22) 270.6 (11) 107.27 (22) 33.w8 (29) 30.862 (26)

4.3.1. The mean square radius of gyration.

Two dimensions. A log-log plot of the mean square radius of gyration against n
(figure 5) shows no evidence of curvature, but a two-parameter fit to the data gives a
very poor xz statistic (a minimum of 28.5 at nmin = 25 with 8 degrees of freedom).
A close examination of figure 5 indicates that the point at n = 600 seems to be off
the regression line. If we examine our data without this point, then x: = 12.53,
(< 95%). We conclude that the data point at n = 600 is an outlier and we estimate
that U = 0.6326 f 0.0019.

I I +
+ 2 dimmaianr + -

+ x 3 dimensma
0 I dimensions

- - Bdimenrions

+ -
t - + x

x - + x 0- - - 0 . x .
x 0 . + 0 -

x 0
N
L " - e 0 - + x 0 e o

e n - - x 0 .
- = +

0 .
- 0 - *
.

-
- I I

103

102

10'

IO"

Figure S. The mean square radius of gyration of trees ploltcd againsl n on logarithmic
axes.

If a three-paramcter analysis oC the data is performed, where we assume equation
(4.16), then we are unablc to minimize the x2 statistic by tuning A. Instead, we find
that x2 decreases slowly as we take A to zero. It seems therefore plausible that
there is a very weak correction present. TO assess the effect of this correction on our
results, we can fix A at some value, and find a best estimate for U (it would not
be unreasonable to choose A = 0.5: while this is not the best value, it nevertheless

322

indicates the size of a systematic error in the two parameter fit by showing the
dependence of v on variations of A; if there are no corrections, then the amplitude
of the correction should be near zero, and v will be consequently independent of A).
Our regression analysis with A = 0.5 gives x: = 4.65 (< 75%). The best estimate
is v = 0 . 6 4 2 2 i 0.0071. We obtain our best estimate of U by taking the average of
the values produced by the two regressions. A systematic error is estimated by the
difference between the best estimate (of U) and either of the ouo regressions. The
statistical error is taken as the maximum from the two regressions. We find

E J Janse van Rensburg and N Madras

ur = 0.6374 f 0.0071 f 0.0048 (4.17)

where the format is besl value f 95% confidence inrerval i systematic error. The
subscript r is to emphasize that we obtained this value from the mean square radius
of gyration.

Three dimensions. An examination of the data in figure 5 shows a slight deviation from
a straight line at the smaller n values: the curve is slightly convex. A two-parameter
fit is good when nmin = 200 (xz = 1.10, < 50%). The value of the exponent is
v = O.4939fO.0021. The same behaviour is observed for a three-parameter fit as in
two dimensions: the xz statistic decreases with A. We follow the same strategy here;
we assume A = 0.5 to gauge a systematic error in our analysis. A fit with nmin = 25
is good (xg = 4.5, < 50%). The result for the exponent is U = 0.4981 i 0.0031.
We can now make our best estimate:

ur = 0.4960 i 0.0031 i 0.0021. (4.18)

Four dimensions. We find that there are in general strong corrections to scaling
here. The plot (figure 5) looks very straight to the eye, but a two-parameter fit
is not good unless we take nmin = 400. Then xg = 5.91, < 90%. This gives
U = 0.4117 f 0.0019. A three-parameter regression behaves as in two and three
dimensions, so we took h = O S . For nlnin = 200 we find x: = 2.7, < 50%. This
gives v = 0.4282 i 0.0079, Comparing these results, we find our best estimate

U, = 0.4200 i 0.0079 & 0.0083. (4.19)

Eight dimensions. In eight dimensions we expect logarithmic corrections to scaling.
Examination of the data (figure 9, howcver, shows that it is very difficult to decide
whether we see a power law correction as opposed to a logarithmic correction. There-
fore, we analyse the data here as in lower dimensions, and we treat the corrections

n is not large enough to exposc a logarithmic correction. The power law assumption
is only an artifact used here to aid our numerical extrapolation.) The plot (figure
5) shows a slight curvature. A two-parameter fit does not provide satisfactory results
here. A three-parameter fit with A = 0.556 and nm!, = 25 gives xz = 6.5, < 75%.
This gives U = 0.2651 i O . O O 1 O . 7b find a systematic error, we examine the sensitiv-
ity of v to the paramcter A. A convenient ad hoc approach is to change the value of
A until the value of the xz statistic has doubled, and then to vary nmln to find v for
these (now fixed) values of A. Our reasoning is as follows. The original xz statistic
measures how well we can choose a value of A to make the model (4.16) fit the data.
The value of A which is ‘best’ in this sense may be far from the ‘true’ value, So we

io scaiing as a hindrance to exiraction of the criiiai exponen&, (it seer,s

Non-local MC algorithm for lattice lrea 323

must guard against the misspecification of A in case the resulting U is too sensitive
to it. 'RI get an idea of the systematic error, then, we also want to examine fits when
we do not have the freedom to vary A. Our criterion chooses new values of A where
the fit is decidedly poorer, hut where we can still find reasonable fits by varying nmin.
In the present case, the xZ statistic is doubled at A equal to 0.705 (where we find
U = 0.2682f0.0016 (nmin = 100)) or 0.422 (where we find U = 0.2594f0.0017
(nmin = 50)). Comparing the results, we find that our best estimate is

U, = 0.2651 f 0,0010 * 0.0057. (4.20)

The statistical error is the 95% confidence interval obtained at A = 0.484, where
we obtained the best value for U. The systematic error is the maximum difference
between the best estimate of U, and the estimates obtained from the fits where the
x2 statistic was doubled. This answer is close to the expected mean field result, which
is 0.25.

Nine dimensions. The situation is similar to eight dimensions. We find with A =
0.505 that U = 0.2560 f 0.0010 (x i = 5.1, < 50% and nmin = 25). The
x2 statistic doubles if A = 0.614 (U = 0.2608 f 0.0008 (nmin = 25)) and if
A = 0.398 (U = 0.2487 f 0.0012 (nmin = 25)). Comparing these results we find
that

vr = 0.2560 i 0.0010 f 0.0073. (4.21)

4.3.2. The mean span.

Two dimensions. A two-parameter fit gives a poor x2 statistic (a minimum of 18.6 at
nmln = 100 with 6 degrees of freedom). This value is over the 99.5 percentile range,
so that we do not have much confidence in this fit. A close examination of the data
shows that the point at n = 600 seems to be off the regression line in two dimensions.
If we reanalyse our data with this point deleted, then x: = 8.4, (< go%), a dramatic
inprovement, where nmjn = 100 as before. We therefore conclude that the data point
at n = 600 is an outlier. We estimate U = 0.6533 f 0.0028 from this regression.

As an alternative, we can instead perform a three-parameter analysis of our data.
If we ignore the data point at n = 600, then the best x2 statistic is obtained at
A = 0.915 with nmjn = 25. We find ~2 = 6.9 (< 90%). Here, we estimate
U = 0.6444f 0.0019. We can now calculate a best value of U by taking the average
of the values produced by the two methods, and a systematic error by considering
the difference between this average and either of the two regressions. We take the
statistical error as the maximum from the two regressions. We find

us = 0.6489 f 0.0028 f 0.0045. (4.22)

The subscript s is to emphasize that this value was obtained from the mean span
data.

Three dimensions. The xz statistic in a two-parametcr linear regression decreases fast
in value with increasing n,,,,". For nmln = 300 we find that ~ 4 2 = 7.72 (< 90%). The
value of the exponent is U = 0.5157 i 0.0020. A three-parameter analysis is very
good. We find a minimum in x2 at A = 0.734 (x.2 = 1.26, < 50%, nmln = 25).

324

The exponent is U = 0.5034 f 0.0018. We can now calculate the best value of U
from the span data:

E J Janse van Rensburg and N Madras

us = 0.5096 i 0.0020 f 0.0062. (4.23)

Four dimensions. We find that there are strong corrections to scaling here. A two-
parameter fit is found to be unsuitable for any nmin in this case. The xz statistic
decreases fast with increasing nmin, bur never to an acceptable value. In contrast
to this, a three-parameter fit with A = 0.78 works well (x: = 8.7, < 90%, and
nmin = 25). The result for the exponent is U = 0.4303f0.0013. ’Ib find a systematic
error, we examine the sensitivity of U to the parameter A. The x2 statistic is doubled
at A = 0.66 and A = 0.91. At A = 0.66 we find that U = 0.4254 0.0020
(nmin = 50) and at A = 0.91 we find that U = 0.4342 f 0.0016 (nmin = 50). A
comparison gives

U$ = 0.4303 f 0.0013 i 0.0049. (4.24)

where the statistical error is the 95% confidence interval obtained

Eight dimensions. We analyse the data here as for the mean square radius of gyration
in eight dimensions. Two-parameter fits are poor, so we assume a power law correc-
tion and proceed as in four dimensions for the mean span. The best fit is obtained for
A = 0.484 and nmin = 50 (x: = 14.5, < 99%). This gives U = 0.2878 f 0.0022.
We examine the dependence of U on A now. The x2 statistic doubles if we take A
to be 0.327 or 0.663. At these values we find the best fits (Y = 0.2540 f 0.0048
(nmjn = 100)) and (Y = 0.3021 f 0.0044 (nmin = 200)). Comparing the values of
U from these fits to our best estimate, we find that

us = 0.288 i 0.003 f 0.034. (4.25)

Nine Dimensions. If we repeat the analysis here (similar to that in eight dimensions),
then we find a best estimate at A = 0.627 where U = 0.2975 f 0.0025 (x i = 3.3,
< 10% and nmin = 100). The value of the x2 statistic doubles at A = 0.687
(U = 0.3028 f 0.0023 if nmin = 100) and A = 0.566 (U = 0.2922 i 0.0018 if
nmin = 50). Comparing these results we find that

U$ = 0.2975 i 0.0025 f 0.0053. (4.26)

4.3.3, E&cussion. it is yenerdiiy ‘oeiieved mean & a poatiy behaved
variable, and that the calculation of U from it is not reliable (in support of this belief,
observe that (4.25) and (4.26) are far from the ‘known’ value 1/4). As our best
estimates we take results from the analysis of the mean square radius of gyration.
The results for the exponent U are consistently near the Flory values for U, where
U = 5 / 2 (d + 2) (Isaacson and Lubensky 1980, sec also Bovier el a / 1984). Of
particular interest are the results in three dimensions. The results from the mean
span barely exclude 0.5, and thc results from the mean square radius of gyration
include the expected value well within error bars. The estimates of U are consistent
with 0.5. We therefore conclude that we see no evidence that equation (1.1) breaks
down in this calculation.

Non-local MC algorithm for lallice irees 325

In eight and nine dimensions we expect that U = 0.25. Unfortunately, our data
suffer from strong corrections to scaling in these cases. (In general, the corrections
got worse with increasing dimension.) We extracted the best estimates for U Only
with great difficulty, and we urge the reader to reanalyse the data in tables 3 and
4. In eight dimensions the estimate from the mean square radius of gyration data
excludes the expected value, but, due to a large systematic error, the estimate from
the mean span is consistent with the expected value. In nine dimensions the situation
is reversed. The estimate from the mean span data is inconsktent with the expected
value, hut then we note that the mean square radius of gyration gives an estimate
which is close to 1/4.

The value of A has been esimated using series analysis in two dimensions by
lshinabe (1989) (A = 0.635 f 0.030). As a consistency check, we performed a
regression for the mean square radius of gyration data assuming this value of A
in (4.14). We find that v = 0.6404 * 0.0058, A = 0.1248 i 0.0090 and b =
0.47 f 0 . 3 3 , while xz = 4.8 (< 50%). (Error bars are 95% confidence intervals.)
These are consistent with the exact enumeration results (of Ishinabe), which are
U = 0.644 k 0.004 and A = 0.1156. Observe that k i n g A at 0.635 does nof
change the estimate of U by more than one standard deviation, and is therefore
statistically indistinguishable from (4.17). If we consider the mean span instead, then
a linear regression is good with xz = 9.7 (< 90%). We find U = 0.6357 + 0.0044,
while A = 1 . 0 1 i 2 . 6 7 and b = -1.05 +0.13. Thk value of U is not consistent with
(4.22), but the sensitivity of U on A is consistent with the idea that the mean span is
a poorly behaved variable. (In these regressions we discarded the point at 7~ = 600,
which we believe is an outlier.)

In three and more dimensions we can use the values of A from Adler el a1
(1988). In three dimensions a regression with A = 1.3 is fine (x; = 11.7, < 95%).
We find v = 0.4921 k 0.0015, A = 0.189 i 0.004 and b = 0.49 i 0.16. This
value of U is in the confidence interval of (4.18), and probably suffers from a sizable
systematic error (since A is not at an optimal value in the regression). An attempt
to fit the mean span data with A = 1.3 is not good. In four dimensions A = 0.8
(Adler et a1 1988). An attempt tfl fit the mean square radius of gyration data to
this A is not good. The mean span is better; as reported, the optimal value of A is
n 70 ... _. - n ~ ? n ? I n nnqi A - n nna I n nnn L - Q c I" 7 U"-,, u.10 , ~ . * 1 I ~ , C . Y - U . l r) u r) I u . u u L I , ~ - u . i . i . O I u . u u i . O l l l " " - - - i . u T " . , . ',G,V

x: = 8.7, < 75%.
In summary, in two and three dimensions, we find little evidence for preferring

one value of A over any other. In four dimensions, the data from the span does seem
to suggest A = 0.78 i 0.10, hut the data from the radius of gyration does not really
support any particular value. We leave the readers to draw their own conclusions;
our own opinions are summarized at the beginning of this section (below (4.14)).

4.4. The mean longesi paih and mean branch size

In section 2.3 we considered the mean longest path in a tree, (p ,) , and the mean
branch size, (b") , of t ree . We argued that p = E , where (p,) - np, and (b ,) - n'.
In this section we consider the estimation of p and 6 from our data. A mean field
calculation gives L = 0.5 (appendix A). The data are listed in tables 5 and 6. We
proceed as in section 4.3. In each case we attempt two fits to the data; a comparison
gives us a systematic error. If one of the fits is had, then we consider the variation in
the exponent with A to estimate a systematic error. We plot the mean longest path
and the mean branch size of the trees in figures 8 and 9. We cannot visually detect

326 E J Janse van Rensburg and N Madras

Table 5. The mean longest path of trees. Error ban are standard deviations.

"
25
50
1W
2W
300
4 w
600
8W

12W
16W

Pn (W)

15.792 (33)
26.560 (70)
44.21 (14)
74.05 (26)

122.15 (50)
98.92 (28)

166.15 (73)
202.83 (9 4
274.2 (15)
343.6 (2G

Pn (ID)

14.435 (25)
22.866 (41)
36.364 (68)
57.06 (12)
74.57 (16)
90.01 (zoj

117.36 (25)
141.48 (30)
185.26 (42)
222.90 (53)

Pn (40) Pn (ED)

13.959 (23) 13.453 (21)
21.697 (37) 20.463 (32)
33.442 (55) 30.601 (48)
51.300 (87) 45.051 (70)
65.62 (11) 56.564 (90)
78.12 j14j 65.96 (il)

1W.02 (17) 82.44 113)
119.74 (zoj 96.40 (I$
153.74 (26) 119.59 (19)
182.01 (29) 139.07 (23)

13.354 (21)
20.376 (33)
30.354 (48)
44.758 (72)
55.869 (87)

81.06 113)
65.37 (11)

Table 6. The mean branch size of lrees. Error bars are standard deviations.

25
50

100
200
300
400
600
8W

1200
1600

4.172 (11)
6.878 (20)

11.300 (4oj
18.810 (70)
25.12 (11)
31.03 (14)
42.14 (2Oj
51.40 (27)
69.34 (40)
86.87 (54)

3.7966 (89)
5.919 (14)
9.264 (22)

14.472 (34)
18.893 (48)
22.751 (57)
29.654 j69j
35.66a (82)
46.56 (12)
56.07 (15)

3.6668 (80)
5.588 (12)
8.515 j i 7 j

12.917 (25)
16.509 (29)
19.561 (34)
25.016 (40)
29.862 (48)
38.318 (60)
45.464 (68)

3.5476 (75)
5.256 (11)
7.719 (14j

11.271 (18)
13.998 (21)
16.303 (22)
20.283 (25)
23.597 (28)
29.191 (32)
34.012 (34)

3.5203 (74)
5.202 (11)
7.643 (14j

11.136 (17)
13.839 (I$
16.132 (22)
19.953 (zsj
23.166 (28)
28.672 (30)
33.311 (33)

any curve in any of these plots, so corrections to scaling are less 'visible' here than
in figures 6 and 7 where we considered the mean square radius of gyration and the
mean span. We fit these data to either a two-parameter assumption

(P,) = DnP (4.27)

or a three-parameter form with a power iaw correction

(p ,) = nP(D + ~ n - ~) (4.28)

similar to the assumptions for the mean span and mean square radius of gyration.
We assume similar functions for the mean branch size and the exponent e .

Two dimensions. A two-parameter fit to the mean longest path data is good with
nmin = 100 (xz = 10.9, < 95%). The exponent is p = 0.7351 f 0.0034. If we
attempt a three-parameter fit then we observe that the xz statistic gets smaller as
A gets smaller; it is also not very sensitive to changes in A. We therefore assume
that A = 0.5. The hest fit is with nmin = 50 (xz = 11.4, < 95%). We find
p = 0.738 f 0.01 1. A camparkon gives our best estimate

p = 0.737 f 0.01 1 f 0.002. (4.29)

A two-parameter fit to the mean branch size data is good with nmin = 100
(x: = 10.5, < 90%). The exponent is E = 0.7328 f 0.0054. A three-parameter

Non-local MC algorilhm for lauice trees 327

fit behaves as for the mean longest path. The best A is small, but we observe that
the x2 statistic does not change much with A. If we fix A = 0.5, then a fit with
nmin = 25 is very good (x; = 9.0, < 90%). The exponent is E = 0 .7388f 0.0074.
If we compare these results, then we find our best estimate

t = 0.7358 f 0.0074 f 0.0030. (4.30)

Three dimemtons. The mean longest path data is well described by a two-parameter
fit if nmin = 100 (xf = 3.3, < 25%). We find p = 0.6545 f 0.0017. A three-
parameter fit works well with A = 0.78 (nmin = 25, and x f = 8.6, < 90%). We
find p = 0.6534 f 0.0026. If we compare these results, then

p = 0.6540 f 0.0026 f 0.0006. (4.31)

The mean branch size fits well to the two-parameter assumption with nmin = 25
(xi = 12.0, < 90%). The value of the exponent is E = 0.6480 f 0.0012. The
three-parameter fit is best if A = 0.65, but the x2 statistic does not vary much with
A (x f = 1.92, < 10%). We find E = 0.6530 f0.0034. If we compare these results
then

c = 0.6505 f 0.0034 f 0.0025. (4.32)

Four dimensions. A two-parameter fit to the mean longest path data with nmin = 100
has x; = 15.6, < 99%. We find p = 0.6117 f 0.0014. A three parameter
fit with A = 1.11 has xg = 15.0 (< 99%) with nmin = 25. The exponent is
- - n cnnc ~n n n i a T C . . . ~ n,......-.o t~~~~ ..a-..~+o +L--
/J - ".UUICI 1 V . V U I U . 11 w c w,,,ya,c ,,,r.Yc Ica"I1a) L l l L l l

p = 0,6106 f 0.0016 f 0.0012. (4.33)

A two-parameter fit to the mean branch size data has ,yg = 18.3 (< 99%).
The result is c = 0.60503 f 0.00092. A threc-parameter analysis indicates that
the exponent is insensitive to the value of A. In fact, changing A from 0.2 to 1 .0
does not change the exponent outside its 95% confidence interval of the estimate at
A = 0.5. At A = 0.5 we find E = 0.6062 f 0.0060. A comparison gives

c = 0.6056 f 0.0060 f 0.0006. (4.34)

Y.6... Fioht r l imonc innr I..,.-.Y.Y,..,, In -.. Aaht -.6... dimenrinns -....-.. " ._.." nnr eYnerts -I.r--." I - lnoarithmir . - ~ cnrrertinn In walino -.... b,

but our numerical procedurcs cannot detect such behaviour. In fact, a power law
assumption (such as equation (4.28)) is better in these cases. For the mean longest
path, a two-parameter fit is very poor. A three-parameter At is good if A = 0.46
(~ 2 = 9.0, < 90%). We find p = 0.5166 f 0.0030. 'lb estimate a systematic error,
we consider choices of A which double the x2 statistic. If we compare the best value
of p to regressions done at A = 0.18 (p = 0.464 f 0.018 (n,,, = 50)) and 0.78
(p = 0.522 * 0.008 (n,," = 200)), then we find that our best value has a large
systematic error:

p = 0.517f0 .003f0 .053 . (4.35)

328 E J Janse van Rensburg and N Madras

A two-parameter fit to the mean branch size data with nmin = 200 is good
(x: = 9.5, < 95%). This gives 6 = 0.5306 f 0.0014. A three-parameter fit with
nmin = 25 has x: = 3.9, < 50%, if A = 0.45. This gives c = 0.5161 f0 .0028 . If
we compare these results, then we find

(4.36)

Nine dimensions. In nine dimensions we expect mean field results for our exponents.

we find xi = 6.4, < 90%. which is acceptable. This gives p = 0.5326 f 0.0026.
A three-parameter fit works well, xi = 2.6, < 25% and A = 0.52. This gives
p = 0.5121 f 0.0028. If we compare these results, then we find our best estimate

c = 0.5234 f 0.0028 i 0.0073.

For the mean longest path a ouo parameter fit is not too good, b??! with nmin = 300

p = 0 . 5 2 2 f 0 . 0 0 3 f 0 . 0 1 1 . (4.37)
The mean branch size data fits well to a two-parameter assumption if we take

nmin = 300 (xi = 3.6, < 50%). This gives z = 0.5244f0.0016. Athree-parameter
fit is good if we take A = 0.31 and nmln = 25, then xi = 4.3 , < 50%. This gives
z = 0.4968 f 0.0040. A comparison of these results gives our best estimate

(4.38)

4.4.1. Discussion. The mean field calculation in subsection 2.3.4 predicted that p = E.
1110 ~ C C I I I O ,U "C L l l C LaJC 111 =act, YIIIIGIIJLUII L L I a L WG CULIJIUGilLU 1.1 L I U > ~ I c Y I a L I " I I ,

where p and z agree consistently within error bars. In high dimensions p and E also
turn out to be close to 1/2, which we expected to be the case from the calculation
in appendix A.

4.5. The degrees of vertices
We argued in section 2.3 that the number of vertices of degree i, (t i) , is expected to
rise linearly with n. In view of assumption (2.20), we can now assume that

We calculate the Ci for i = 1 , 2 and 3 by taking a numerical limit as we have done
in section 4.2. Also, let

= 0.511 f 0.004 f 0.014.

Im:" rnn..." ,,. Ln tLn ~ n " n :" -"̂ L A:...""":,." .I.̂. ... ̂ ,,,."..:A..-..,l :.. .I.:̂ -..l....t".:--

(t i) / n = ci + yn-'. (4.39)

2d

(4.40) 1 , . . \ - F L I .,
'>41WI = ,7- Li\WI

i=4

be the number of vertices with degree greater than 3 in a tree w. In the same way,
we shall calculate C b 4 , which we define to be the limit of (t b 4) / n .

Table 7. The fraction of wrlices of degree i. Error bars are standard deviations

2 0.2637 (2) 0.4978 (2) 0.2134 (I) 0.02513 (5)
3 0.3096 (2) 0.4341 (2) 0.2075 (I) 0.04874 (6)
4 0,3284 (1) 0.4110 (I) 0.2017 (I) 0.05902 (4)
8 0.3522 (I) 0.3840 (I) 0.1917 (I) 0.07211 (3)
9 0.3545 (I) 0.3815 (I) 0.1906 (I) 0.07327 (3)

We list our results in table 7. The data suggest that the Ci converge as the
dimension increases. It would be interesting to determine if there is any theoretical
basis for this behaviour. The error bars in table 7 are standard deviations.

Non-local Mc algorithm for lattice frees 329

5. Conclusions

The introduction of large, non-local, elementary transitions in a Monte Carlo simula-
tion of lattice (bond) trees proved very successful. We illustrated that the performance
of the algorithm is enhanced significantly by comparison to an algorithm with only
small elementaly transitions (algorithm A). In addition, the performance of algo-
rithm B improves with increasing dimension, a theoretical limit on the growth of the
exponential autocorrelation time, measured in CPU seconds, can he estimated from
equations (4.7) and (k 3) . We find

T,(B) - n CPU seconds. (5.1)

Below the critical dimension of eight, we cannot expect such good behaviour: in

algorithm B grow roughly like n2.' in two dimensions and like nl.' in three dimen-
sions; the exponent decreases (to 1, we conjecture) as the dimension increases. For
comparison, in the case of the pivot algorithm applied to self-avoiding walks, the
integrated autocorrelation times are believed to be proportional to n in every dimen-
sion (Madras and Sokal 1988). The pivot algorithm for polygons in three dimensions
fared slightly worse: the integrated autocorrelation times were found to grow roughly
as nl.' (Janse van Rensburg et a1 1990). However, our algorithm B was found to he
much better than algorithm A, whose integrated autocorrelation times were found to
grow roughly like n3 in both two and three dimensions. This may improve in higher
dimensions, hut it can never be better than nz, by the following argument. We can
think of algorithm A as 'picking' leaves from the tree and appending them elsewhere
on the tree. Consider the correlation between two edges on the longest path of the
tree. lb destroy this (conformational) correlation, algorithm A must remove edges
from an endpoint of the longest path until it has deleted at least one of these edges.
Let the set of edges to be removed be coloured red, and let the rest of the tree he
coloured blue. If an elementary transition removes a red edge and appends it to the
blue side, then this edge becomes blue, and vice versa. The number of red edges is
O(n) (see the arguments in section 2.3). Since the algorithm moves edges between
the red and blue sets, and within the red and blue sets, we can think of the number of
red edges performing a random walk on positive integers. Therefore, the number of
transitions required to remove all the red edges will be O(n2) . Since each transition
takes 0(1) CPU seconds, we find

Cn-t ..,- fi"A +I..,+ lie .."it0 ,.f P D I I rn,.,."rlL\ e h n : n r ~ n r P m A Q.,,,-.n-rnlQ,i"* ,;mm fnr
I(.&,(wc lll," ,,,a, \"' Y.I.L.7 Y L GI" 'CCV.,"", ,,,U ,111 '&,a,.,., O " L " U I . . I I O L . Y . I .a... I" I-.

r , (A) - n2 CPU seconds. (5.2)

This heuristic argument supports our belief that algorithm B is numerically superior
to algorithm A.

The grand canonical Monte Carlo algorithms for trees are necessary to estimate
the exponent B (equation (1.2)), which we cannot extract from our data. For walks,
the introduction of pivots into a grand canonical algorithm, such as the BFACF al-
gorithm (Berg and Foerster 1981) improved the performance of the Monte Carlo
simulation (see for example Caracciolo et a/ 1989). The way is now open for a similar
development in the simulation of lattice trees; a hybrid algorithm consisting of the
algorithm of Glaus (1985) supplemented with large non-local moves from algorithm B
should perform much better than previous algorithms.

330 E J Janse van Rensburg and N Madras

Table 8. Best estimates for the exponents U and p. The error bars are calculated by
adding the 95% confidence interval to a systematic error.
~ ~

Dimensions Y P
~~

2 0.6371 f0.0119 0.136f0.013
3 0.4960-1 0.0052 0.6523zt 0.0059
4 0.4200f 0.0162 0.6081 f 0.0066

n h l e 8 contains our best estimates of exponents in two, three, and four dimen-
sions. For v, we take the estimates obtained from the mean square radius of gyration
data as our hest estimates, and for p we take the average of the estimates from
the mean longest path data and the mean branch size data (assuming of course that
p = E). The error bars given are taken to be the maximum error in each of the

statistical errors. Note that the exponent p is a new, intrinsic exponent for trees,
measuring the mean path length between vertices in the tree. The fact that p < 1
is interesting; it implies that in the scaling limit, the distance between two nearest
vertices of degree other than two will go to zero. A tree will be a highly branched
object, with an arbitrary number of branching points in every open subset of the tree.

Table 9. The estimates for v from the literature. (a = Series expansion, b = Monte
Carlo calculation, c = Exact enumeration of animals, d = Renormalisation group, e =
Flory exponents, f = Dimensional reduction, g = Exact enumeration. h = Scanning
Method). The error bars are those given by the authors.

hiin e ~ t i m m t n c 7h &re 9 r;nnla onnr h-r x v o tnr\L tho D B . ~ nf tho ci,rtomot;r snrl the ."" u I I L I I I Y L I Y . I" 6 L . I Y U...6.' U..". "Y, -1 L Y Y h I.._ Y"... Y. ,..U a,l."...Y..u Y L l V L 1 . l

Reference 2 dimensions 3 dimensions 4 dimensions

Kune and Fisher (1Yi9)a - 0.5 0.425

de Alcantara Bonfim er 01 (198o)c - 0.55 f 0.05 0.450 f 0.035
Family (1980)d 0.637
lsaacson and Lubensky (1980)e 0.625 0.5 0.417

Parisi and Saurlas (1981)J - 0.5
Parisi and Sourlas (1981)d - - 0.42

Gaunt ci 01 (1982)g - 0.55 f 0.05 0.45 f 0.05

Dhar (1983)f - - 0.417

Redner (1979)b 0.57 f 0.06 0.45 f 0.06 -

- -

Gould and Hall (1Y81)b - 0.53 i 0 .02 -

Seilz and Klein (1Y8Qb 0.615 0.46 -
Derrida and de S e e (1982)d 0.6408 f 0.0003 - -

Bovier er 01 (19&l)b 0.6402f 0.0084 - -
Margolina ei 01 (1984)g 0.640 f 0.004 - -
Privman (1984)g 0.6394f 0 . 0 0 6 7 - -

Caracciolo and GIaus (1985)b 0.635 f 0.015 - -
Glaus (198S)b -
Duarte (198i5)b 0.650 f0.015 - -
Meiravilch (198nh 0.640 i 0.004 - -
lshinabe (1969)c 0.644 i 0.004 - -

-

Alexandrowia (1985)O 0.64 f 0.03 0.50 f 0.03 0.42 f 0.03

- 0.495 f 0.013

Adler er a1 (1983)" - 0.500 f 0.010 0.425 f 0.015

This paper (1991)b 0.637f0.012 0.4960f0.0052 0.420 f 0.017

Finally, we provide a detailed comparison with results of previous estimates of the
exponent v in table 9. In two dimensions the best estimates are from renormalization

Non-local M c algorithm for lallice trees 33 1

group calculations: Derrida and de Seze (1982) found U = 0.6408 f 0.0003 while
KertQz (1986) estimated U to be 0.6406 f 0.0002. From a numerical point of
view we expect exact enumeration to provide the best estimates for U (in analogy
with the situation for walks). This is indeed the case, as we note in table 9. An
exact enumeration by Margolina e1 a1 (1984) estimates U = 0.640 f 0.004 and a
study by Ishinabe (1989) finds U = 0.644 ZL 0.004, while Meirovitch (1987) uses the
scanning method (which can be considered a hybrid of exact enumeration and the
Monte Carlo method of Rasenbluth and Rosenbluth (1968) (for walks) generalized to
trees) to find that U = 0.640 f 0.004. Of the Monte Carlo simulations for trees the
best estimate was produced by a simulation done by Bovier e1 a/ (1984) who found
v = 0.6402 & 0.0084. The other Monte Carlo studies performed in the last ten
years all have results of comparable accuracy, these are the simulations by Caracciolo
and Glaus (1985) (v = 0.635 f 0.015), Duarte (1986) (U = 0.650 f 0.015) and
ine resuits in this paper (U = 0.637 O.Oi2j. (pis we noted in section 2.2, the
algorithm used by Duarte fails to satisfy detailed balance; however, his result includes
the accepted value. I t is difficult to guess what systematic error would be present
in his data.) The total computing time involved in estimating U using algorithm B
was about 11 hours of CPU time on a DEC5000 workstation. If we compare this
fact to the results of Bovier et al (1984) and Caracciolo and Glaus (1985) we note a
"'6 ""y1""C"L"L1L 1.. yC,L"""a"~, C**ll I, W C ,ah- l l l l" abC"uIII L U G J lVnrl c " " 1 p L C 1 "

used in thase studies. (Bovier e1 al (1984) performed a run of 180 hours on a CDC-
1741720 while Caracciolo and Glaus (1985) performed a run of 380 hours on a VAX
111780). In defense of the grand canonical algorithms we should note that they can,
in addition to U, also estimate the growth constant and the specific heat exponent (e)
in (he same run.

Studies of trees in three dimensions are not as common as in two dimensions,
The best estimate is given by the Monte Carlo simulation in this paper (U = 0.4960f
0.0052), while a heroic effort by Glaus (1985) estimates that v = 0.495 f 0.013
(using a grand canonical algorithm). In four dimensions a similar situation is found.
The best result is given by the simulation in this paper (U = 0.420 f 0.017), the
only other Monte Carlo result being that of Alexandrowicz (1985) who found that
v = 0.42 * 0.03. We are not aware of any exact enumeration results in three and
four dimensions. These Monte Carlo results are close to the 'exact' value 5/12 of v ,
which resulted from Dhar's identification of directed animals (in d dimensions) and a
lattice gas with extended hard cores in (d - 1) dimensions. Numerically, it is possible
that even better results in three and four dimensions could be found by an exact
enumeration study; however, with improving technology, the best numerical results
will inevitably come from Monte Carlo studies since the effort in exact enumeration
grows exponentially with increasing 7 1 .

I.:.. :......,...nl.n"+ :" ..n.t-,....."",-a '... _" :I ...- +^La :..*,. -".̂,.....* .La ^I,...,or ,.,........mrr

Acknowledgments

The authors acknowledge numerous discussions with S G Whittington. N Madras was
partially supported by a University Research Fellowship and an operating grant from
NSERC of Canada.

Appendix A. Mean field theory for E

Let 1, be the number of t rea (unrooted) with n vertices. Then it is believed that

332

1, - n-'X", with e given in equation (1.2). Pick an edge in a tree. This roots
the tree at this edge. If we delete the edge, then we find two subtrees, one with
(say) k vertices and the other with n - k vertices, rooted at the vertices incident on
the deleted edge. The mean number of vertices in the smaller subtree (assume that
k < n - k without loss of generality) is then given by

E J Janse van Rensburg and N Madras

We can now evaluate this expression to find

(b,) - n3-'. (k 2)

The mean field value of f3 is 512 (Bovier et a1 1984), so we have

E = 112 (-4.3)

in the mean field approximation.

References

Adler J. Meir Y, Harris A B, Aharony A and Duanc J A M S 1988 Phys. RN D 38 4941
Alerandrawin 2 1985 Phys. Rw. L e r ~ 54 14M
Berg B and Foenter D 1981 Phys. Len 1068 323
Bovier A, Fmhlich J and Glaus U 19% CriricalPhmancno, Random Sysem, Govgr 7?woiies (LesHoughes

Caracciolo S and Glaus U 1985 1. Slot Phys. 41 95
Caracciolo S. Pelissetto A and Sokal A D 1989 NucL Phys. B (Proe SupplJ 9 525
Carmesin I and Kremer K 1988 Macromolecules 21 2819
Dhar D 1983 Phys, Reu L ~ I L 51 853
de Alcantara Bonfim 0 F, Kirkham J E, McKane A J 1980 1. Phys. A: Moth G m 13 U 4 7
Dcrrida B and d e Seze L 1982 1. Physique 43 475
Dewdney A K 1985a Sci. Am (6) 18
- 1985b Sci. Am (9) 24
Duane J A M S 1986 J. Phys. A: Morh. G m 19 1979
Duane J A M S and Cadilhe A M R 1989 1. Sioi. Phys. 56 951
Duane 1 A M S and Ruskin H J 1981 1. Physique 41 1585
Family F 1980 1. Phys. A: Mach. Gen. 13 W25
Fisher D S, Ftohlich J and Spencer T 1984 1. Sioi. Phys. 34 863
Fisher M E 1978 Phys. Reu Len. 40 1610
Gaunt D S, S y k a M E Torrie G M and Whitlington S G 1982 J. Phys. A: M O A Gen. I5 3209
Glaus U I985 1. Phys. A: Moth Gen. I8 U 0 9
Gould H and Holl K 1981 1. Php. A: Maih. Gm. 14 U 4 3
lmbrie I Z 1984 Phys. Rev. Len. 53 I747
lsaacson J and Lubensky T C 1980 3. Physique Leu. 41 IA69
lshinabe T 1989 1. Phys. A: Maih Gen. 12 4419
Janse van R e n s b q E J , Whitlington S G and Madras N I990 I Phys. A: Moih Got. 23 1589
Kemeny J G and Snell J L 1976 finire Markov Chains (Berlin: Springer)
KertCsz J 1986 1. Phys. A: Maih Gen. 19 599
Knuth D E 1973 The An of Compuier Proffomming vol 3 (Reading, MA: Addison-Wesley)
Kremer K and Binder K 19x8 Compui. Phys. Rep. 7 259
Kune D A and Fisher M E 1979 Phys. Rev. B 20 2785
Lipson J E G, Gaunt D S. Wilkinson M K and Whitlington S G 1987 Mocromolecules 20 186

Swsion XLIII) ed K Ostemalder and R Stora (Amslerdam: Elsevier)

Non-local MC algorithm for lattice trees 333

Lubenslry T and lsaanon 1 1979 Phys. Re%! A 20 2130
Madras N 1989 Unpublished
Madras N and Sob1 A D 1988 1. Stat Phys. 50 109
Margalina A, Family F and Privman V 19% Z. Phys, B 54 321
Meirwilch H 1987 1. Phys A: Moth Gen 20 6059
Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 19531. C h m Phys 21 1087
Parisi G and Sourlas N 1981 Phys RN. Lett 46 871
Peters H P, Stauffer D, Hollers H P and LoRuenich K 1979 Z. Phys. 8 34 399
r l l Y U l l l l l I (,7w+, '"Y"1L" *'>A 9'0

Rmenbluth M N and Rosenbluth A W 1968 1. C h n Phys. 49 648
Redner S 1979 I . Phys. A: Malh G m 12 U34
Seitz W A and Klein D J 1981 1. C h n Phys 75 5190
Sikq S D 1975 Slarirrical Infnmcc (London: Chapman and Hall) ch 3
Whitlington S G, Ljpson J E G, Wilkinson M K and Gaunt D S 1986 Macromolccules 19 1241
Wilson R J and Watkins 1 J 1990 Graph: An Inwoductoy Approoch (New York Wilqr)

"2 .._...,,. no"\ nL...:__ 1.1. " - 0

